	Vellalar College for Women (Autonomous), Erode - 12.									
	Bachelor of Science in Mathematics									
	Course Content and Scheme of Examinations (CBCS & OBE Pattern)									
2018 – 2019 and 2019 – 2020 Onwards Semester I										
Semester I D Study Subject Inst. Exam. Max. Mar								ks	Cred	ita
rari	Components	Code	The of the raper	Week	Hrs.	CIA	ESE	Total	Creu	115
Ι	Language I	18TAMU101/ 18HINU101	Tamil / Hindi	6	3	25	75	100	3	
Π	Language II	18ENLU101	English	6	3	25	75	100	3	
	Core	18MSUC101/ 18MCUC101	Classical Algebra©	4	3	25	75	100	4	
		18MSUC102/ 18MCUC102	Calculus©	5	3	25	75	100	4	
III		18MSUA101/ 19MCUA101	Statistics for Mathematics - I ©	5	3	20	55	75	4	
	Allied I	18MSUAP01/ 19MCUAP01	Allied Practical - Mathematical Software - I ©	2	3	-	25	25	1	
IV	Foundation Course A	18FOCU1ES	Environmental Studies	2	3	-	100	100	2	
Total 600 2										
Semester II										
I Language I 18TAMU202/ 18HINU202 Tamil / Hindi 6 3 25 75								100	3	
II	IILanguage II18ENLU202English632575								3	
		18MSUC203/ 18MCUC203	Differential Equations & Laplace Transforms©	4	3	25	75	100	4	
III	Core	18MSUC204/ 19MCUC204	Trigonometry , Vector Calculus & Fourier Series©	3	3	20	55	75	3	
		18MSUCP01/ 19MCUCP01	Core Practical - Mathematical Software - II ©	2	3	-	25	25	1	4
	Allied I	18MSUA202/ 19MCUA202	Statistics for Mathematics - II ©	7	3	25	75	100	5	
IV	Foundation Course B	18VEDU2HR	Value Education & Human Rights	2	3	-	100	100	2	
	Total 600							21		
	© - Common Syllabus for B.Sc., (Mathematics) and B.Sc., (Mathematics with Computer Applications)									

Semester III										
Ι	Language I	18TAMU202/ 18HINU202	Tamil / Hindi	6	3	25	75	100	3	
II	Language II	18ENLU202	English	6	3	25	75	100	3	
		18MSUC305	Analytical Geometry	3	3	25	75	100	4	
III	Core	18MSUC306	Foundation Course in Mathematics	3	3	25	75	100	4	
IV	Allied II	18PHUA303	Allied Physics-I	7	3	20	55	75	4	
	Skill Based Subject I	18MSUSP01/ 18MCUSP01	SBS -Practical LaTeX (Cafeteria system)©	3	3	40	60	100	3	
	Basic Tamil				-	100	-			
	Advanced Tamil			2	3	25	75			
	Non-Major Elective I	18MSUN301	Mathematics for Data Science		3	-	100	100	2	
Total 675										
		1	Semester IV	7			1	1		
Ι	Language I	18TAMU202/ 18HINU202	Tamil / Hindi	6	3	25	75	100	3	
П	Language II	18ENLU202	English	6	3	25	75	100	3	
	Corra	18MSUC407	Linear Algebra	3	3	25	75	100	4	
	Cole	18MSUC408	Real Analysis I	3	3	25	75	100	4	
III	Allied	18PHUA404	Physics – II (Theory)	4	3	20	55	75	4	6
	Amed	18PHUAP01	Physics – II (Practical)	3	3	20	30	50	2	0
	Skill Based Subject II	15MSUC402/ 15MCUC402	Multiskill Development Paper©	3	1	40	60	100	3	
	Basic Tamil				-	100	-			
117					2	25	75			
IV	Advanced Tamil			2	3	23	15	100	2	
IV	Advanced Tamil Non-Major Elective II	18MSUN402	Mathematics for All	2	3	-	100	100	2	
IV	Advanced Tamil Non-Major Elective II	18MSUN402	Mathematics for All	2	3	-	100	100 725	2 25	

SKILL BASED SUBJECT								
S.No	Subject CodeTitle of the PaperCredits							
1	18MSUSP01/18MCUSP01	SBS - Practical LaTeX (Practical) (Cafeteria System)		3				
2	15MSUC402/15MCUC402	Multiskill Development Paper (Online exam - Ext : 60)		3				
	BASIC TAMIL/ADVANCED TAMIL/ NON-MAJOR ELECTIVES							
1	14TMLU301	Pasia Tamil *		2				
1	14TMLU402	Basic Talilli	2					
ſ	14ADTU301	14ADTU301 Advanced Tamil		2				
2	14ADTU402	**	2					
3	18MSUN301	Mathematics for Data Science	2					
4	18MSUN402	Mathematics for All	2					

SELF- LEARNING PAPERS (Optional)								
S.No	Subject Code	Title of the Paper	Exam. Dur.Hrs.	Max.Marks	Credits			
1	18MSUSL02	Astronomy	3	100	5			
2	15MSUSL15	Scilab (Online exam)	1	100	5			

MOOCs Non-ranking Compulsory Credit Course will be introduced in Part V for UG from the Academic Year 2019-20 and onwards

B.Sc., (Mathematics) and B.Sc., (Mathematics with CA)

Bloom's Taxonomy Based Assessment Pattern

Components of CIA Marks

Tests (I & II)	Assignment / Seminar / Subject Viva	Model Examination	Total
10	5	10	25
8	4	8	20

CIA

Bloom's	Section	Choice	Marks	Total
Category				
K1	А	Compulsory	$2 \ge 2 = 4$	
K1, K2	В	Either / Or	$2 \ge 5 = 10$	30
K2, K3	С	Open Choice (2 out of 3)	2 x 8 = 16	

Model and End Semester Examinations

Bloom's Category	Section	Choice	Marks	Total
K1	А	Compulsory	5 x 2 = 10	
K1, K2	В	Either / Or	5 x 5 = 25	75
K2, K3,K4	С	Open Choice (5 out of 8)	5 x 8 = 40	

SEMESTER I

CODE	COURSE TITLE
18MSUC101/	
18MCUC101	CLASSICAL ALGEDRA

Core 25 75 56 4 - 4	Category	CIA	ESE	L	Т	Р	Credit
	Core	25	75	56	4	-	4

Preamble

- To acquire complete knowledge of summation and approximation through Binomial, Exponential and Logarithmic series
- To understand concepts and improve problem solving skills on theory of equations
- To gain knowledge in theory of numbers

Prerequisite

• Knowledge in basic concepts of series, equations and types of equations

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Find the sum of finite and infinite Binomial, Exponential and Logarithmic series	K1
CO2	Solve equations using various techniques	K2
CO3	Find the approximate roots of an equation by Newton's method and Horner's method	К3
CO4	Gain knowledge in number theory	K2
CO5	Study the concept of congruences and its properties	K2

Mapping with Programme Outcomes

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	L	М	М
CO2	М	S	М	S	S
CO3	S	S	М	S	S
CO4	М	S	М	М	S
CO5	S	S	L	М	S

S- Strong; M-Medium; L-Low

Binomial, Exponential and Logarithmic Series: Theorems - Statements without proofs - Emphasize on their Immediate Application to Summation and Approximation.

UNIT II

Theory of Equations: Roots of an Equation - Relations Connecting the Roots and Coefficients -Symmetric Function of Roots - Transformations of Equations - Reciprocal Equations - Character and Position of Roots - Descarte's Rule of Signs.

(12 hrs.)

(12 hrs.)

Syllabus UNIT I

UNIT III

Theory of Equations: Rolle's Theorem – Multiple Roots – Newton's Method of Approximation for Finding Positive Roots upto Two Decimal Places – Horner's Method upto Two Decimal Places.

UNIT IV

Theory of Numbers: Prime and Composite Numbers – the Sieve of Eratosthenes – Divisors of a Given Number N – Euler's Function $\phi(N)$ - Integral Part of a Real Number – the Highest Power of a Prime pContained in n! - the Product of r Consecutive Integers is Divisible by r! – Congruences. **UNIT V** (12hrs.)

Theory of Numbers: Properties of Congruences – Numbers in Arithmetical Progression – Theorem – Fermat's Theorem – Generalization of Fermat's Theorem – Wilson's Theorem – Lagrange's Theorem.

Text Books								
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition				
1	T. Natarajan, T.K. ManicavachagomPillay&K.S.Ganapathy	Algebra – Vol. I (Units I, II & III) and Vol. II (Units IV & V)	S.Viswanathan Printers and Publishers Pvt., Ltd.,Chennai.	Vol. I , 2014-2015 Vol. II, 2012-2013				

Unit	Chapter	Sections
Т	3	5-10, 14
1	4	1 - 3, 5 - 9.1, 11(without limit)
II	6	1 - 12, 14 - 19, 21, 24
III	6	25, 26, 30
IV	5	1 - 12
V	5	13 – 18

Reference Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	R.M. Khan	Algebra - Classical, Modern, Linear & Boolean	New central Book Agency(P) Ltd.,Kolkata	Reprint 2016
2	H.S. Hall &S.R.Knight	Higher Algebra	AITBS Publishers, India	Reprint 2014
3	Erwin Kreyszig	Advanced Engineering Mathematics	Wiley & Sons, United States	2012, 9 th Edition

Pedagogy

Lecture, PPT, Quiz, Assignment, Group Discussion, Seminar and Subject Viva

Web Resources

- 1. http://nptel.ac.in/courses/106105162/18
- 2. http://nptel.ac.in/courses/111106083/33
- 3. https://www.khanacademy.org/math/algebra2/polynomial-functions/fundamental-theoremof-algebra/v/possible-real-roots

(12 hrs.)

(12 hrs.)

- 4. http://www.math.kent.edu/~white/FCA/text/jan09ed.pdf
- 5. http://www.gutenberg.org/files/29785/29785pdf.pdf?session_id=1888afffae379b4647cad5675a6b169d2543f267
- Question paper setters are asked to confine to the above **text books** only.

SEMESTER I

CODE	COURSE TITLE
18MSUC102/	CALCULUS
18MCUC102	CALCULUS

Category	CIA	ESE	L	Т	Р	Credit
Core	25	75	70	5		4

Preamble

- To focus on conceptual understanding
- To explore fundamental concepts of differential and integral calculus
- To explore the solutions of problems from a mathematical perspective, and
- To prepare students to succeed in upper level math, science, engineering and other courses which require calculus

Prerequisites

- Students must know the different types of functions and deriving new functions from given functions
- Students must know the integration of all basic types of functions

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the meaning of differentiation using limits	K1, K2
CO2	Construct n th derivatives of different functions	K3
CO3	Compute radius and centre of curvature	K2
CO4	Evaluate integration of trigonometric functions	K2
CO5	Apply calculus concepts to solve real-world problems such as finding areas and volumes	К3
N T		

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	М	М	Μ
CO2	М	М	S	S	S
CO3	S	М	М	М	S
CO4	М	S	М	S	S
CO5	S	S	М	S	S

S- Strong; M-Medium; L-Low

Syllabus

UNIT I

(15 hrs.)

Differentiation – Definition – Standard Forms – Logarithmic Differentiation – Differentiation of Implicit Functions – Differentiation of one Function with respect to Another – Successive Differentiation – Leibnitz Formula for nth Derivative of a Product (Statements and Problems only)

UNIT II

Envelopes - Radius of Curvature in Cartesian and Polar Forms - Centre of Curvature -Evolutes and Involutes – Pedal Equations (15

UNIT III

hrs.)Integration of the types $dx/(ax^2+bx+c)$, $lx+m/(ax^2+bx+c)$, $1/\sqrt{ax^2+bx+c}$,

$$(px+q)/\sqrt{ax^2+bx+c}$$
, $\frac{1}{a\cos x+b}$, $\frac{1}{a\sin x+b}$ and $\frac{1}{(a^2\cos^2 x+b^2\sin^2 x)}$ – Integration

by parts – Reduction formulae – Problems – Bernoulli's formula – Problems **UNIT IV**

Multiple Integrals : Evaluation of Double and Triple Integrals Problems only – Applications to Calculation of Areas and Volumes – Jacobians – Change of Variables in Double and Triple Integrals

UNIT V

Text Books

Improper Integrals: Infinite Integrals - Simple Problems - Beta and Gamma Integrals -Their Properties – Relation between them – Evaluation of Multiple Integrals using Beta and Gamma Functions

- •• -	00110			
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	S. Narayanan and T.K.ManicavachagomPillay	Calculus, Vol. I (Units I, II)	S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai	2015
2	S. Narayanan and T.K.ManicavachagomPillay	Calculus, Vol. II (Units III, IV, V)	S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai	2015

Unit I	Chapter II &	
Unit II	Chapter X	
	Chapter I	Sec. 7.3 Rule (b) Type (i) & (ii)
Unit III		Sec. 8 Case (i) & (ii)
		Sec. 9, 12, 13, 15
	Chapter IV	2.2, 4, 5.3, 5.4, 6.3
Unit IV	Chapter VI	1.1, 1.2, 2.1 – 2.4
Unit V	Chapter VII	

Reference Books

Sl.No.	o. Author Name Title of the Book Publisher		Year and Edition				
1	Tom M.Apostol	Calculus Vol.1 and Vol.2	John Wiley & Sons United States	2016, 2 nd Edition			
2	James Stewart	Calculus: Early Transcendentals	Thomson Brooks/Cole, USA	2008, 6 th Edition			

(15 hrs.)

(15 hrs.)

(15 hrs.)

Pedagogy

Lecture, PPT, Subject Viva, Seminar, RBPT and Videos

Web Resources

- 1. http://nptel.ac.in/courses/111104085/29
- 2. https://www.khanacademy.org/math/calculus-home
- https://ocw.mit.edu/courses/mathematics/18-01-single-variable-calculus-fall-2006/video-lectures/
- 4. http://www.math.odu.edu/~jhh/Volume-1.PDF
- 5. http://www.math.odu.edu/~jhh/Volume-2.PDF
- Question paper setters are asked to confine to the above **text books** only.

SEMESTER I

CODE	COURSE TITLE
18MSUA101	STATISTICS FOR MATHEMATICS – I

Category	CIA	ESE	L	Т	Р	Credit
Allied	20	55	70	5	-	4

Preamble

• To acquire knowledge in the fundamentals of statistics such as random variables, distribution of the discrete and continuous types, bivariate distributions and functions of random variables

Prerequisite

• Must know the concepts in probability theory such as properties of probability, independent events, conditional probability and Baye's theorem

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Learn the concept of random variables	K1
CO2	Exercise the problem solving ability in statistics	K3
CO3	Study the characteristics of discrete and continuous distributions	K2
CO4	Acquire knowledge in of bivariate distributions	K2
CO5	Make use of random variables to find the distributions of functions of random variables	К3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	
CO1	М	S	М	S	М	
CO2	S	S	М	S	М	
CO3	М	S	М	S	М	
CO4	М	S	S	S	S	
CO5	М	S	М	S	S	

S- Strong; M-Medium; L-Low

UNIT I

Discrete Distributions : Random Variables of the Discrete Type – Mathematical Expectation - Special Mathematical Expectation - Binomial Distribution - Negative Binomial Distribution - The Poisson Distribution

UNIT II

Continuous Distributions : Random Variables of Continuous Type - Exponential, Gamma

and χ^2 Distributions – Normal Distribution

UNIT III

Bivariate Distributions: Bivariate Distributions of the Discrete type - Correlation Coefficient - Conditional Distributions - Bivariate Distributions of the Continuous Type -The Bivariate Normal Distributions

UNIT IV

Distributions of Functions of Random Variables: Functions of One Random Variable -Transformations of Two Random Variables - Several Random Variable- The Moment Generating Function Technique

UNIT V

Text Book

Distributions of Functions of Normal Random Variables: Random Functions Associated With Normal Distributions - The Central Limit Theorem - Approximation for Discrete Distributions - Chebyshev's Inequality - Convergence in Probability

, o 11			
Author Name	Title of the Boo	k Publisher	Year and Edition
Robert V. Hogg,	Probability and	Pearson	
Elliot A. Tanis,	Statistical	Education Inc.	2015, 9 th Edition
Dale L.Zimmerman	Inference	UK	
nce Books			
Author Name	Title of the Book	Publisher	Year and Edition
PrasannaSahoo	Probability and Mathematical Statistics	University of Louisville, USA	2013
Barbara Illowsky,	Introductory	Rice University,	2014, Last
Susan Dean	Statistics	Texas	Edition
	Author Name Robert V. Hogg, Elliot A. Tanis, Dale L.Zimmerman Icc Books Author Name PrasannaSahoo Barbara Illowsky, Susan Dean	Author NameTitle of the BooRobert V. Hogg, Elliot A. Tanis, Dale L.ZimmermanProbability and Statistical InferenceInterest BooksTitle of the BookAuthor NameTitle of the BookPrasannaSahooProbability and Mathematical StatisticsBarbara Illowsky, Susan DeanIntroductory Statistics	Author NameTitle of the BookPublisherRobert V. Hogg, Elliot A. Tanis, Dale L.ZimmermanProbability and InferencePearson Education Inc. UKAuthor NameTitle of the BookPublisherProbability and InferencePublisherPrasannaSahooProbability and Mathematical StatisticsUniversity of Louisville, USABarbara Illowsky, Susan DeanIntroductory StatisticsRice University, Texas

(15 hrs.)

(15 hrs.)

(15 hrs.)

(15 hrs.)

3	Robert V. Hogg, Joseph W. McKean, Allen T. Craig	Introduction to Mathematical Statistics	Pearson Education Inc. UK	2018, 8 th Edition
4	S.C. Gupta and V.K. Kapoor	Fundamentals of Mathematical Statistics	Sultan Chand & Sons,New Delhi	2014

Pedagogy

Lecture, PPT, Seminar, Subject Viva and Videos

Unit	Chapter	Sections	Page No.
Ι	2	2.1 to 2.6	41-72, 79-85
II	3	3.1 to 3.3	87-113
III	4	4.1 to 4.5	125-153
IV	5	5.1 to 5.4	163-179, 187-191
V	5	5.5 to 5.8	192-216

Web Resources

- 1. http://nptel.ac.in/courses/102106051/4
- 2. http://nptel.ac.in/courses/108106083/lecture30_CLT.pdf
- 3. https://www.khanacademy.org/math/statistics-probability/random-variables-statslibrary/modal/v/discrete-and-continuous-random-variables
- 4. http://www.e-booksdirectory.com/details.php?ebook=10166
- 5. https://www.probabilitycourse.com/
- 6. http://mason.gmu.edu/~jgentle/books/MathStat.pdf
- Question Paper setters are asked to confine to the above **text book only**

SEMESTER I

CODE	COURSE TITLE
18MSUAP01	MATHEMATICAL SOFTWARE – I

Category	CIA	ESE	L	Т	Р	Credit
Allied Practical		25			30	1

Preamble

• To apply the statistical knowledge acquired through the theory course

Prerequisite

• To be familiar with the basic statistical concepts of measures of central tendency, measures of dispersion, descriptive statistics, correlation, regression & testing of hypothesis.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Be equipped with the professional competency through learning Free Open Source Software - R	K3
CO2	Create the database, visualizing and analyzing the data using R	K2
CO3	Make inferences through the results obtained	K4
Monning	with Programma Outcomes	

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	S	S
CO2	S	S	М	S	S
CO3	S	S	М	S	S

S- Strong; M-Medium; L-Low

List of practicals

- 1. Use R as a calculator using basic Commands in R
- 2. Data entry, manipulation and retrieval
- 3. Creating frequency and relative frequency distribution in R
- 4. Creating data frame, matrices
- 5. Descriptive statistics, Graphics pie diagram, box plot, histogram, bar plot
- 6. Creating functions

- 7. To find mean, median, geometric mean, harmonic mean of numerical data and edit the output
- 8. To determine standard deviation, variance and checking the consistency of the given data and edit the output
- 9. Bivariate data- scatter plot, correlation co-efficient, fitting linear regression line and interpreting the result
- 10. Multiple linear regression models
- 11. Computation of probabilities in various distributions.(Binomial, Poisson, Normal)
- 12. Drawing the graph of probability mass and density functions
- 13. One and two sample't' test and paired' ttest
- 14. One way and two way Analysis of Variance tests

NUIUIU						
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition		
1	W. John Braun and Duncan J. Murdoch	A First Course in Statistical Programming with R	Cambridge University Press, Newyork	2007		
2	J H Maindonald	Using R for Data Analysis and Graphics: Introduction, Code and Commentary	https://cran.r- project.org/doc/contri b/usingR.pdf	2008		
3	Kim Seefeld and Ernst Linder	Statistics Using R with Biological Examples	https://cran.r- project.org/doc/contri b/Seefeld_StatsRBio.p df	online		

SEMESTER II

CODE	COURSE TITLE
18MSUC203/	DIEEEDENTIAL COLLATIONS AND LADIACE TRANSCORMS
18MCUC203	DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS

Category	CIA	ESE	L	Т	Р	Credit
Core	25	75	56	4	-	4

Preamble

- To promote conceptual knowledge and problem solving skills of ordinary differential equations and partial differential equations
- To understand the evaluation of different functions through Laplace Transformation

Prerequisite

• Must know the basic formulae of differentiation and problem solving techniques

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Solve the first order differential equations through various techniques	K1 & K2
CO2	Learn the methods of solving second order ODE for different functions of x	K2
CO3	Evaluate the partial differential equations of first order using different methods	K2
CO4	Apply Laplace transformation to solve differential equations	K3
CO5	Make use of inverse Laplace transforms to solve the ordinary differential equations and system of differential	K3

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	М	L	S	S
CO2	М	S	М	S	S
CO3	М	S	М	S	S
CO4	S	М	L	М	S
CO5	S	М	М	М	S

Mapping with Programme Outcomes

S- Strong; M-Medium; L-Low

Syllabus UNIT I

(12 hrs.)

First order ODEs: First Order Higher Degree Equations– Solvable for *x*, *y*, *p* - Clairaut's form – Simultaneous Differential Equations of the Form (i) $f_1(D)x + f_2(D)y = h_1(t)$, $g_1(D)x + g_2(D)y = h_2(t)$ (*t*)where f_1, f_2, g_1 and g_2 Are Rational Functions of D = d/dt with Constant Coefficients, h_1 and h_2 are Explicit Functions of *t* (ii) dx/P = dy/Q = dz/R – Conditions of Integrability

UNIT II

Second order ODEs: Particular Integral of Equations of Second Order with Constant Co-efficients for

 xe^{mx} – Higher Order Equations when F(D) is easily Factorizable – Linear equations with Variable Coefficients (Reducible to Quadratic form) (12 hrs.)

UNIT III

Partial Differential Equations: Formation of Equations by Eliminating Arbitrary Constants and

Arbitrary Functions – Definition of General, Particular and Complete Solutions – Singular and General

Solutions of First Order Equations in the Standard Forms (i) f(p,q) = 0, (ii) f(z,p,q) = 0, (iii) f(x,p) = 0

g(y,q), (iv) z = px + qy + f(p,q) – Lagrange's Method of Solving Linear Differential Equations Pp + Qq

= R

UNIT IV

(12 hrs.)

Laplace transforms: Definition – Laplace Transforms of e^{at} , cosat, sinat and t^n where n is an Integer - First Shifting Theorem – Laplace Transforms of $e^{at} \cos bt$, $e^{at} \sin bt$ and $e^{at} t^n$ – Theorems of $L\{f'(t)\}, L\{f''(t)\}, L\{f^n(t)\}.$ (12 hrs.)

UNIT V

Inverse Laplace Transforms: Definition - Solution of Differential Equations with Constant Coefficients using Laplace Transformation - Solving System of Linear Differential Equations using Laplace Transformation

Text Book						
Sl.No.	Author Name	Title of the	Publisher	Year and		
		Book		Edition		
1	S. Narayanan &T.K.ManicavachagomPillay	Calculus Vol. III	S. Viswanathan Printers and Publishers Pvt. Ltd., Chennai	Reprint 2015		

Unit	Chapter	Sections
Т	1	5 - 7.3
1	3	1 –6
II	2	1 - 4, 8, 9
III	4	1-6
IV	5	1-5
V	5	6 – 9

Reference Books

110101011						
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition		
1	M D Raisinghania	Ordinary and Partial	S.Chand& Sons,	2016 18 th Edition		
1	M.D.Raisinghama	Differential Equations	New Delhi	2010, 18 Luition		
2	Empire Vroyania	Advanced Engineering	Wiley & Sons,	2012 Oth Edition		
2 Erwin Kreyszi	Erwin Kreyszig	Mathematics United	United States	2012, 9 Eulitoli		
2	D.C. Creation	Higher Engineering	Khanna Publishers,	2014 12rd Edition		
3	B.S.Grewal	Mathematics	New Delhi	2014, 45 Edition		

(12 hrs.)

Pedagogy

Lecture, PPT, Quiz, Assignment, Group Discussion, Seminar and Subject Viva

Web Resources

- 1. http://nptel.ac.in/courses/111105035/22
- 2. http://nptel.ac.in/courses/103103037/5
- 3. https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/laplace-transform-basics/
- 4. http://www.math.ust.hk/~machas/differential-equations.pdf
- 5. https://www.math.psu.edu/shen_w/PDF/NotesPDE.pdf
- Question paper setters are asked to confine to the above **text book** only.

SEMESTER II

CODE	COURSE TITLE
18MSUC204	TRIGONOMETRY, VECTOR CALCULUS AND FOURIER SERIES

Category	CIA	ESE	L	Т	Р	Credit
Core	20	55	42	3		3

Preamble

- To focus on conceptual understanding
- To introduce logarithm of a complex quantity
- To prepare students to succeed in upper level math, science, engineering and other courses which require trigonometry and vector calculus
- To impart the application of sine and cosine functions in signals using Fourier series

Prerequisite

• Students must know the basics of trigonometric identities, complex number system and the difference between scalars and vectors

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Expand sines and cosines of multiples of theta and powers of theta	K2
CO2	Find logarithm of a complex number and summation of trigonometric series	K 1
CO3	Understand the relation between directional derivative, gradient, divergence and curl	K 1
CO4	Make use of theorems to study relation between line, surface and volume integrals	К3
CO5	Evaluate line, surface and volume integrals	K3

Mapping with Programme Outcomes

	PO1	PO2	PO3	PO4	PO5
CO1	М	S	L	М	S
CO2	М	М	М	М	S
CO3	М	М	L	S	S
CO4	S	S	М	S	S
CO5	S	S	М	S	S

S- Strong; M-Medium; L-Low

Syllabus

UNIT I

(9 hrs.)

Expansions: Expansion of $\cos n\phi$, $\sin n\phi$, $\cos^n \phi$, $\sin^n \phi$ – **Hyperbolic functions** – Separation of real and imaginary parts of $\sin(\alpha + i\beta)$, $\cos(\alpha + i\beta)$, $\tan(\alpha + i\beta)$, $\sinh(\alpha + i\beta)$, $\cosh(\alpha + i\beta)$, $\tanh(\alpha + i\beta)$, $\tanh(\alpha + i\beta)$, $\tan^{-1}(\alpha + i\beta)$

(9 hrs.)

(9 hrs.)

Scalar and Vector Point Functions– Directional Derivative, Gradient, Divergence, Curl – Summation notation for Divergence and Curl – Laplacian Differential Operator – Problems

UNIT IV

UNIT III

Integration of Vectors : Line, Surface and Volume Integrals – Theorems of Gauss, Green, Stokes (Statements only) – Verification

UNIT V

Toxt Books

Fourier Series : Definition – Finding Fourier Coefficients for a Given Periodic Function with Period 2π – Odd and Even Functions – Half Range Series

I CAU D	00105			
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
			S.Viswanathan	
1	S. Narayanan and	Trigonometry	Printers and	2015
	T.K.ManicavachagomPillay	(Units I, II)	Publishers Pvt. Ltd.,	2013
			Chennai	
2	P.Duraipandian,	Vector Analysis	Emerald Publishers,	2014
2	LaxmiDuraipandian	(Units III, IV)	Chennai	2014
			S.Viswanathan	
3	S. Narayanan and	Calculus, Vol. III	Printers and	2015
	T.K.ManicavachagomPillay	(Unit V)	Publishers Pvt. Ltd.,	2013
			Chennai	

LINIT I	Chapter III	Sec. 1 & Sec. 4
UNIT I	Chapter IV	Sec. 1 & Sec. 2
	Chapter V	Sec. 5
	Chapter VI	Sec. 1 & Sec. 2
UNIT III	Chapter II	2.1-2.8
	Chapter III	3.1, 3.5 – 3.7
UNITIV	Chapter IV	4.1 – 4.6
UNIT V	Chapter VI	Sec. 2, 3 & 4

Reference Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	Robert E Moyer, Frank Ayres JR	Schaum's Outlines Trigonometry	Tata McGraw Hill Publishing Company, New Delhi	2013, 5 th Edition
2	M.D.Raisinghania, H.C.Saxena, H.K.Dass	Trigonometry	S.Chand& Sons, New Delhi	2002
3	James Stewart	Calculus: Early Transcendentals	Thomson Brooks/Cole, USA	2008, 6 th Edition

UNIT II

Logarithm of a Complex Number and Summation of Series: Logarithm of a Complex Number – Summation of Trigonometric Series – Method of Differences – When Angles are in A.P.

(9 hrs.)

(9 hrs.)

4	Peter V.O'Neil	Advanced Engineering Mathematics	Cengage Learning India Pvt. Ltd., New Delhi	2012, 7 th Edition
---	----------------	--	--	----------------------------------

Pedagogy

Lecture, PPT, Subject Viva, Seminar, RBPT and Videos

Web Resources

- 1. http://nptel.ac.in/courses/122101003/downloads/Lecture-44.pdf
- 2. https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-functions/line-integrals-vectors/v/line-integrals-and-vector-fields
- 3. https://www.intmath.com/fourier-series/3-fourier-even-odd-functions.php
- 4. https://www.khanacademy.org/science/electrical-engineering/ee-signals/ee-fourier-series/v/ee-fourier-coefficients-cosine
- 5. https://www.pdfdrive.net/calculus-early-transcendentals-8th-ed-2015pdfe27097109.html

Search \rightarrow (https://www.pdfdrive.net/) \rightarrow (Academic and Education) \rightarrow (Engineering)

• Question paper setters are asked to confine to the above **text books** only

SEMESTER II

CODE	COURSE TITLE
18MSUCP01	MATHEMATICAL SOFTWARE – II

Core 25 30 1	Category	CIA	ESE	L	Т	Р	Credit
	Core Practical		25			30	1

Preamble

- To give hands-on experience in the Free Open Source Software SageMath which will be highly useful for future teachers and researchers
- To visualize the mathematical concepts for better understanding

Prerequisites

• Students must know the basic concepts of number theory, calculus, theory of equations and differential equations

Course Outcomes

On the successful completion of the course, students will be able to				
	CO Statement	Knowledge Level		
CO1	Use Geogebra to draw geometrical shapes	K2		
CO2	Use SageMath as a calculator	K3		
CO3	Solve number theory problems	K3		
<u>CO</u> 4	Make use of theoretical concepts to solve problems and	V2		
004	visualize the output	КJ		

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

S- Strong; M-Medium; L-Low

List of Practicals – SAGEMATH

- 1. Use SageMath as a calculator A Financial Example
- 2. Use Sage for Trigonometry
- 3. Use Sage to Graph 2-Dimensionally
- 4. Superimposing Multiple Graphs in One Plot
- 5. Making Own Functions and Plotting in Sage
- 6. Solving Linear and Non-Linear Systems of Equations
- 7. Use Sage as a Numerical Solver

- Use Sage to find Derivatives & Plot f(x) and f '(x) Together and find Higher-Order Derivatives
- 9. Use Sage to Calculate Integrals
- 10. Labeling the Axes of Graphs
- 11. Graphing an Integral
- 12. Parametric 2D Plotting
- 13. Vector Field Plots, Gradients and Vector Field Plots
- 14. Working with the Integers and Number Theory
- 15. Combinations and Permutations

Text Book						
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition		
1	Gregory V. Bard	Sage for Undergraduates	online version			

1.	р.б
2.	p.7 – 8
3.	p.8 – 11
4.	p.14
5.	p.30
6.	p.39 – 40
7.	p.43
8.	p.49 – 50
9.	p.51 – 58
10.	p.91 – 94
11.	p.95 – 97
12.	p.112 - 114
13.	p.114 - 115
14.	p.145 – 147
15.	p.153

SEMESTER II

CODE	COURSE TITLE
18MSUA202	STATISTICS FOR MATHEMATICS – II

Category	CIA	ESE	L	Т	Р	Credit
Allied	25	75	100	5	-	5

Preamble

• To learn the theory of estimation and testing of statistical hypothesis

Prerequisite

• Must have the basic knowledge about the characteristics of statistical measures

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Learn the theory of estimation	K1
CO2	Acquire knowledge about confidence intervals	K2
CO3	Formulate the statistical hypothesis	K3
CO4	Enhance the statistical knowledge by applying the techniques learned in testing of statistical hypothesis	K2
CO5	Analyze and draw inferences based on the results of the testing of hypothesis	K4

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	М	S	М
CO2	М	S	М	S	М
CO3	S	S	S	S	S
CO4	М	S	М	S	S
CO5	S	S	М	S	S

S- Strong; M-Medium; L-Low

Syllabus UNIT I

(21 hrs.)

Point Estimation : Maximum likelihood estimation – A simple regression problem – Sufficient Statistics –.Descriptive Statistics

UNIT II

(21 hrs.)

Interval Estimation : Confidence Intervals for Means – Confidence Intervals for the Difference of Two Means – Confidence Intervals of Proportions– Sample Size.

UNIT III

(21 hrs.)

Test of Statistical Hypothesis : Tests About One Mean – Tests of the Equality of Two Means - Tests About Proportions - Power of a Statistical Test - Best Critical Regions. **UNIT IV**

(21 hrs.)

Some more Parametric Tests : Chi-Square Goodness of Fit – Contingency Tables – Tests Concerning Regression - Correlation.

UNIT V

(21 hrs)

Analysis of Variance : One – Factor Analysis of Variance – Two Way Analysis of Variance.

Text Boo	Text Book					
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition		
1	Robert V. Hogg, Elliot A. Tanis,Probability and Statistical InferenceDale L.Statistical InferenceZimmermanStatistical Inference		Pearson Education Inc, UK	2015, 9 th Edition.		
Referenc	e Books					
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition		
1	PresannaSahoo	Probability and Mathematical Statistics	University of Louisville, USA	2013		
2	Barbara Illowsky, Susan Dean	Introductory Statistics	Rice University, Texas	2014 , Last Edition		
3	Robert V. Hogg, Joseph W. McKean, Allen T. Crag	Introduction to Mathematical Statistics	Pearson Education Inc, UK	2018, 8 th Edition		
4	S.C. Gupta and V.K. Kapoor	Fundamentals of Mathematical Statistics	Sultan Chand & Sons, New Delhi	2014		

Pedagogy

Lecture, PPT, Seminar, Subject Viva and Videos

Unit	Chapter	Sections	Page No.
Ι	6	6.1, 6.4, 6.5, 6.7	256 - 266
II	7	7.1 to 7.4	301-315,324-331
III	8	8.1 to 8.3, 8.5, 8.6	355 - 371, 392 - 406
IV	9	9.1, 9.2, 9.6	415 - 435, 462 - 467
V	9	9.3 to 9.4	435 - 455

Web Resources

- 1. http://nptel.ac.in/courses/103106120/
- 2. http://nptel.ac.in/courses/110104085/5

- 3. https://www.khanacademy.org/math/statistics-probability/inference-categorical-data-chi-square-tests/modal/v/goodness-of-fit-example
- 4. http://www.e-booksdirectory.com/details.php?ebook=11787
- 5. http://www.math.louisville.edu/~pksaho01/teaching/Math662TB-09S.pdf
- 6. http://homepages.math.uic.edu/~rgmartin/Teaching/Stat411/Notes/411notes.pdf
- Question paper setters are asked to confine to the above **text book only**

SEMESTER – III

CODE	COURSE TITLE
18MSUC305	ANALYTICAL GEOMETRY

Category	CIA	ESE	L	Т	Р	Credit
CORE	25	75	42	3		4

Preamble

- To focus on conceptual and practical understanding
- To discuss the ideas of polar equations
- To illustrate the shapes sphere, cone and cylinder through conceptually and problematically
- To introduce the concepts of quadric cones

Prerequisites

• Students must know the basics of geometry and equations of geometrical figures in both Cartesian and Polar forms

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO6	Develop the polar form of straight lines, circle and conic sections and also to understand their properties	К2
CO7	Gain more profound knowledge on straight lines	K2
CO8	Analyze the characteristics of sphere	K4
CO9	Demonstrate the fundamental concepts of cone and cylinder	K1
CO 10	Integrate the concepts of cone and straight line	K3

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO6	S	S	S	S	S
CO7	М	S	S	S	S
CO8	S	S	S	S	S
CO9	S	S	М	S	S
CO10	S	S	S	S	S

S-Strong; M-Medium; L-Low

Syllabus UNIT I

(10 hrs.)

Polar Equations: Polar co-ordinates–Distance between the points (r_1, θ_1) and (r_2, θ_2) – Transformation of polar co-ordinates into Cartesian co-ordinates and vice –versa–Area of a triangle when the polar co-ordinates of the angular points are known– Equation of a straight line– Parallel straight lines–Perpendicular straight lines–The chord joining the points whose vectorial angles are θ_1 and θ_2 on the circle $r = 2a \cos\theta$ – Polar equation of a conic –Tracing the conic $\frac{l}{r} = 1 + e \cos\theta$ –

The equation of the chord of the $\operatorname{conic} \frac{l}{r} = 1 + e \cos\theta$ joining the points whose vectorial angles are $\alpha - \beta$ and $\alpha + \beta$ – The asymptotes of the conic $\frac{l}{r} = 1 + e \cos\theta$ – Equation of the normal at a point P whose vectorial angle is α - Some properties of the general conic – The equation of the polar of any point (r_1, θ_1) with respect to the conic $\frac{l}{r} = 1 + e \cos\theta$ -The equation of the pair of tangents drawn from the point (r_1, θ_1) with respect to the conic $\frac{l}{r} = 1 + e \cos\theta$.

UNIT II

(8 hrs.)

(9 hrs.)

Straight line: A Straight line may be determined as the intersection of two planes –Symmetrical form of the equations of a line –Equations of a straight line passing through two given points – The plane and the straight line– Coplanar lines–Interpretations of equations –Loci–The intersection of three planes – Volume of Tetrahedron.

UNIT III (9 hrs.)

Sphere: Definition – Equation of a sphere when the centre and radius are given – The length of the tangent circle on a sphere – The plane section of sphere is a circle – Intersection of two spheres is a circle –The equation of the tangent plane to the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ at a point (x_1, y_1, z_1) .

UNIT IV

Cone and Cylinder: The equation of a surface–Cone – Right Circular cone – Intersection of a straight line and a quadratic cone – Tangent plane and normal– Condition for the plane lx+my+nz=0to touch the quadratic cone $ax^2+by^2+cz^2+2fyz+2gzx+2hxy=0$ – The angle between the lines in which the plane ux+vy+wz=0 cuts the cone – Cylinder – Enveloping cylinder.

(9 hrs.)

UNIT V

I

Central Quadrics:Definition – The intersection of a line and a quadric – Tangents and tangent planes – The condition for the plane lx+my+nz=0 to touch the quadratic cone $ax^2+by^2+cz^2=1$ – Polar planes and polar lines – Normal at the point (x_1, y_1, z_1) to the conicoid $ax^2 + by^2 + cz^2 = 1$.

ſ	Yext Books						
	Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition		
	1.	T.K.ManicavachagomPillay and T.Natarajan	Analytical Geometry (Part- I – Two Dimensions) (Unit I)	S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai	Reprint 2014		
	2.	T.K.ManicavachagomPillay and T.Natarajan	Analytical Geometry (Part- II – Three Dimensions) (Units II,III,IV,V)	S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai	Reprint 2016		

Units	Chapter	Sections
Ι	9	1–15
II	3	1–11
III	4	1 – 8
IV	5	1 – 8.3
V	5	9 - 13

Reference Books

Sl.No.	Author Name	Title of the Book Publisher		Year and Edition		
1	P.Duraipandian	Analytical	Muhilan Publishers,	Doprint 2010		
1	KayalalPachaiyappa	Geometry 2–D Chennai.		Reprint 2010		
2	P.Duraipandian	Analytical	Muhilan Publishers,	Revised edition		
2	KayalalPachaiyappa	Geometry 3–D	Chennai.	2009		

Pedagogy

• Lecture, PPT, Quiz, Group Discussion, Seminar

Web Resources

- 1. <u>https://www.khanacademy.org/math/basic-geo/basic-geo-lines/parallel-perp/v/parallel-and-</u>perpendicular– lines-intro.
- 2. http://sigc.edu/department/maths/studymet/AnalyticalGeometry3D
- 3. https://www.brainkart.com/article/Three-Dimensional-Analytical-Geometry_6453/
- 4. https://www.whitman.edu/mathematics/calculus/calculus_01_Analytic_Geometry.pdf
- Question paper setters are asked to confine to the above **text books** only.

B.Sc., (Mathematics)

ANALYTICAL GEOMETRY

Bloom's Taxonomy Based Assessment Pattern

Components of CIA marks						
Test (I & II)	Assignment / Seminar / Subject viva	Model Examination	Total			
10	5	10	25			

Continuous Internal Assessment I & II							
Bloom's	Bloom's Section Choice Marks						
Category							
K1	A	Compulsory	2 x 2 = 4				
K1, K2	В	Either / Or	2 x 5 = 10	30			
K2, K3	C	Open Choice (2 out of 3)	2 x 8 = 16				

Model and End Semester Examinations							
Bloom's	Section	Total					
Category							
K1	A	Compulsory	5 x 2 = 10				
K1, K2	В	Either / Or	5 x 5 = 25	75			
K2, K3, K4	C	Open Choice (5 out of 8)	5 x 8 = 40				

SEMESTER III

CODECOURSE TITLE18MSUC306FOUNDATION COURSE IN MATHEMATICS

Category	CIA	ESE	L	Т	Р	Credit
CORE	25	75	42	3	-	4
D						

Preamble

- To focus on conceptual understanding
- To strengthen the fundamental knowledge of mathematical concepts
- To introduce the concept of statements and logic, sets and functions, relations and basic principles with due clarity

Prerequisite

- To imbibe the ability in the students to understand, visualize and express mathematics with requisite rigour
- To train the students in problem solving skills

Course Outcomes

On the successful completion of the course, students will be able to

СО	. CO Statement				Knowledge		
Number					Level		
CO1	Acquire the knowled statements and some	Acquire the knowledge of Quantifier Statements, Compound statements and some proofs in mathematics					
CO2	Apply the concept o and Cartesian produ	K3					
CO3	Demonstrate the bas functions and invers	K4					
CO4	Analyze the relations on sets and types of relations				K4		
CO5	Evaluate the concep and equivalence of t	K5					
Mapping	with Programme Ou	itcomes					
COs	COsPO1PO2PO3PO4						
CO1	S	S	S	S	S		
CO2	S	М	S	М	S		
CO3	S	S	М	М	S		
CO4	S	S	S	S	S		
CO5	S	S	S	S	S		

S-Strong; M-Medium; L-Low

Syllabus

UNIT I

Unit II

Statements and Logic: Statements - Statements with Quantifiers - Compound Statements -Implications – Proofs in mathematics.

Sets: Basic terminologies - Operations on sets - Family of sets - Power sets - Cartesian product of sets.Unit III

Unit III

Functions: Basic definitions - One-one, Onto functions and Bijections - Composition of functions - Inverse of a function - Image of subsets under functions - Inverse image of subsets under functions.

Unit IV

Text Book

Relations: Relations on sets – Types of relations – Equivalence relations – Equivalence classes and partitions of a set.

Unit V Induction principles: The Induction Principle – The Strong Induction Principle – The Well – Ordering Principle – Equivalence of the three Principles.

L CHIC DO				
S. No. Author Name		Title of the Book	Publisher	Year and Edition
	Ajit Kumar,	A Foundation	Narosa	Einst Domint
1	S. Kumaresan & Bhaba	Course in	Publishing	
	Kumar Sarma	Mathematics	House Pvt. Ltd.,	2018

Unit	Chapter	Section
Ι	1	1.1-1.5
II	2	2.1-2.5
III	3	3.1-3.6
IV	4	4.1-4.4
V	5	5.1-5.4

Referenc Books

S.No.	Author Name	Title of the Book	Publisher	Year and Edition	
1	Ajit Kumar and S.	A Basic Course	CRC Press	Reprint 2017	
1	Kumaresan	in Real Analysis		Reprint 2017	
			Pearson		
2	James Munkres	Topology	Education	2001, 2^{nd} Edition	
			(India)		
2	Robert G. Bartle and	Introduction to	Wiley Student	Domint 2011	
5	Donald R. Sherbert	Real Analysis	Edition	Reprint 2011	

(9 hrs.)

(8 hrs.)

(8 hrs.)

(10 hrs.)

(10 hrs.)

Pedagogy

• Lecture, PPT, Quiz, Group Discussion and Seminar

Web resources

- 1. http://mtts.org.in/expository-articles
- 2. https://nptel.ac.in/courses/111105098/

3. https://www.class-central.com/course/nptel-introductory-course-in-real-analysis-7941

4. <u>https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-linear-equations-functions/cc-8th-function-intro/v/relations-and-functions</u>

• Question paper setters confine to the above **text book** only.

B.Sc., (Mathematics)

FOUNDATION COURSE IN MATHEMATICS

Bloom's Taxonomy Based Assessment Pattern

Components of CIA marks						
Test (I & II)	Assi	gnment / Seminar /	Model Examination	Total		
		Subject viva				
10		5 10		25		
Continuous Internal Assessment I & II						
Bloom's	Section	Choice	Marks	Total		
Category						
K1	А	Compulsory	$2 \ge 2 = 4$			
K1, K2 B Either / Or		$2 \ge 5 = 10$	30			
K2, K3	С	Open Choice (2 out of	of 3) $2 \ge 8 = 16$			

Model and End Semester Examinations						
Bloom's Section		Choice	Marks	Total		
Category						
K1 A		Compulsory	5 x 2 = 10			
K1, K2 B		Either / Or	5 x 5 = 25	75		
K2, K3, K4 C		Open Choice (5 out of 8)	$5 \ge 8 = 40$			

SEMESTER-III

CODE	COURSE TITLE	
18MSUSP01	LATEX	

Category	CIA	ESE	L	Т	Р	Credit
SBS-Practical	40	60	-	-	45	3

List of Practicals

1) Write a passage and make footnote, margin note and end notes using LaTex.

2) Draw the various table structure for the end semester results.

- 3) Type any $n \times n$ matrix when n = 1, 2, 3, 4.
- 4) Type your Bio-Data [Affix your photocopy at the right corner]
- 5) Draw the graph of $y = x^2$, $y = \cos x$, $y = \sin x$.
- 6) Type the following expressions using Latex

$$(i)(x + y).(x - y) = x^{2} - y^{2}$$

$$(ii) (x - y)^{2} = x^{2} - 2xy + y^{2}$$

$$(iii)(x + a)^{n} = x^{n} + nC_{1}x^{n-1}a + nC_{2}x^{n-2}a^{2} + \dots + nC_{r}x^{n-r}a_{r}$$

$$(iv) e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{r}}{r!}$$

$$(v) log(1 + x) = x - \frac{x^{2}}{2!} + \frac{x^{3}}{3!} - \dots + (-1)^{n}\frac{x^{n}}{n!} + \dots$$

7) Type the following expressions:

$$(i) x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$(ii) \lim_{x \to 0} \frac{\sin x}{x} = 1$$
$$(iii) \Delta x, \ \Delta^2 y, \ \nabla x, \ \nabla^2 y$$
$$(iv) \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

8) Create a balance sheet as on current date.

9) Write an expression for nested roots.

10) Draw a simple RLC circuit subject to a voltage input.

11) Express the following equations: $d^2 y = d^2 y$

$$(i)\frac{dy}{dx}, \frac{d^{-}y}{dx^{2}}, Dy, y', \dot{y}, \ddot{y}$$

$$(ii)\frac{\partial w}{\partial x}, \frac{\partial^{2} w}{\partial t^{2}}, \frac{\partial^{2} w}{\partial x \partial y}$$

$$(iii)x^{2}\frac{d^{2} y}{dx^{2}} + 4x\frac{dy}{dx} + 2y = x \log x$$

$$(iv)\frac{\partial^{2} z}{\partial x^{2}} - 5z\frac{\partial z}{\partial x} + 6z = 12x$$
12) Express the following integrals:
$$(i)\Gamma(x) = \int_{0}^{t} e^{-t}t^{x-1}dt, \quad Re(x) > 0$$

$$(ii) \iint_{s} F(x, y)dxdy \quad and \quad \iiint_{v} F(x, y, z)dxdydz$$

$$(iii)\oint_{s} F. dr = \iint_{s} (\Delta \times F)ds$$

$$(iv)x^n J_n(x) = \int x^n J_{n-1}(x) dx$$

13) Type the following

(i)
$$\sum |x_i y_i| \le (\sum |x_i|^p)^{\frac{1}{p}} (\sum |y_i|^q)^{\frac{1}{q}}$$

(ii) $\sum_{n=1}^{\infty} x_i$
(iii) $(A \cup B)' = A' \cap B'$
(iv) $\prod_{j=0}^{J} K_j$
(v) $|u.v| \le ||u|| ||v||$

14) Construct a circle with given centre and radius.

- 15) Prepare a model question paper as per your department pattern.
- 16) Type a given article.
- 17) Make your department conference invitation using Latex.
- 18) Make a PowerPoint presentation of your own topic of interest.

B.Sc., (Mathematics) LaTex

Components of Internal marks						
	Test (I & II)	Average of CIA I & II	Model Examinations	Total		
	40	20	20	40		
SEMESTER – III

CODE	COURSE TITLE
18MSUN301	MATHEMATICS FOR DATA SCIENCE

Category	CIA	ESE	L	Т	Р	Credit
Non-Major Elective I	-	100	27	3	-	2

Syllabus	
UNIT I	(6 hrs.

Matrix Algebra: Matrices - Vectors - Addition and Scalar Multiplication - Determinants -Eigen Values - Eigen Vectors.

UNIT II

Data Analysis: Data representation - Average - Spread - Permutations and Combinations **UNIT III** (5 hrs.)

Probability Theory: Experiments - Outcomes - Events - Probability

UNIT IV

Data Interpretation: Percentage - Calendar - Average - Simplification - Ratio and proportion - Profit and loss - Problems on trains - Problems on ages - Numbers - Time and work - Time and distance -Banker's discount - Volume and surface area.

UNIT V

Set Theory: Definition – Notations – Methods of description of sets – Types of sets – Venn diagram - Set operations - Laws and properties of sets - Number of elements - Cartesian product.

(6 hrs.)

(7 hrs.)

(6 hrs.)

Text Books							
Sl.No.	Author Name	Author NameTitle of the BookPublisher		Year and Edition			
1.	Erwin Kreyszig	Advanced Engineering Mathematics (Units I,II,III)	John Wiley & Sons Inc.	2011, 9 th Edition			
2.	PA.Navnitham	Business Mathematics and Statistics (Unit V)	Jai Publishers, Trichy	2012, 1 st edition			

Units	Chapters	Sections
Ι	1	7.1, 7.2, 7.7 & 8.1
II	24	24.1 & 24.4
III	24	24.2& 24.3
IV	Problems from Web resources	-
V	3	1 – 9

Reference Book

11010101								
S.No.	Author Name	Title of the Book	Publisher	Year and Edition				
1.	P.R.Vittal	Statistics	MarghamPublishers,Chennai	2012, 6 th Edition				

Pedagogy

• Lecture, PPT, Quiz, Group Discussion, Seminar

Web Resources

- 1.https:/nptel.ac.in/courses/122107036/28
 - 2.https:/nptel.ac.in/courses/101108057/downloads/Lecture-27.pdf

3.http://nptel.ac.in/courses/105107129/module10/lecture2/lecture2.pdf

4.https://www.indiabix.com

 $5.https://www.btechguru.com/CAT-algebra-and-geometry-set-theory-venn-diagrams-problem-using-venn-diagrams-video-lecture- -5842- -8- -54.html \ .$

• Question paper setters are asked to confine to the above **text books** only.

SEMESTER – III

NON MAJOR ELECTIVE I – MATHEMATICS FOR DATA SCIENCE Question Paper Pattern

Model and End Semester Examinations

Choice	Marks	Total
Open Choice (5 out of 8)	5 x 20 = 100	100

SEMESTER – IV

CODE	COURSE TITLE
18MSUC407	LINEAR ALGEBRA

Category	CIA	ESE	L	Т	Р	Credit
CORE	25	75	42	3		4

Preamble

- To acquaint students with the fundamental and important topics of linear algebra
- To inculcate and instill the concepts of vector spaces with illustrated examples.
- To emphasize the symbiotic relationship between linear transformations and matrices and
- To impart the concepts of inner product and norms.

Prerequisites

• Students must know the basics of vector algebra and matrices.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the basic concept of vector spaces	K1
CO2	Identify the linear transformation and integrate it with matrices	K2
CO3	Take a look at isomorphism, invertibility and dual spaces	K2
CO4	Apply the ideology of matrices into systems of linear equations	К3
CO5	Get aware of the concepts of inner product spaces	K1

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	М	S	S	S

CO2	S	S	S	S	S
CO3	S	S	М	S	S
CO4	S	S	S	S	М
CO5	S	S	S	S	S

S-Strong; M-Medium; L-Low

Syllabus

UNIT I

Vector spaces: Vector spaces – Subspaces –Linear Combinations and Systems of Linear Equations – Linear Independence and Linear dependence – Bases and Dimension – Maximal Linearly Independent subsets.

UNIT II

Linear transformations: Linear transformations, Null spaces andRanges – The matrix representation of a linear transformation – Composition of linear transformation and matrix multiplication.

UNIT III

Isomorphism and Dual Spaces: Invertibility and Isomorphisms – The change of coordinate matrix – Dual spaces.

UNIT IV

Elementary Matrix Operations:Elementary Matrix Operations and Elementary matrices – The rank of a matrix and matrix inverse – Systems of Linear Equations – Theoretical aspects – Systems of Linear Equations – Computational aspects.

UNIT V

Inner product spaces: Inner products and norms – Gram-Schmidt orthogonalization process and Orthogonal complements.

Text DOORS							
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition			
1.	Stephen H.Friedberg, Arnold J. Insel, Lawrence E.Spence	Linear Algebra	Pearson Education India;	2015, 4 th Edition			

Units	Chapter	Sections
UNIT I	Chapter I	1.1-1.7

(9 hrs.)

(8 hrs.)

(10 hrs.)

(10 hrs.)

(8 hrs.)

UNIT II		Chapter II		2.1-2.3	
UNIT III		Chapter II		2.4-2.6	
UNIT IV		Chapter III		3.1-3.4	
UNIT V		Chapter VI		6.1-6.2	
Referen	ice Books				
Sl.No.	Author Name	Title of the Book	Publ	isher	Year and Edition
1.	Kenneth M.Hoffman, Ray Kunze	Linear Algebra	Prentice Learnin Lin	Hall India g Private nited	2015, 2 nd Edition

Pedagogy

• Lecture, PPT, Quiz, Group Discussion, Seminar

Web Resources

- 1. http:// faculty .atu.edu./mfinan/algebra2.pdf
- 2. <u>https://www.math.ucdavis.edu</u> /~linear/linear -guest.pdf
- 3. <u>http://joshua</u> .smcvt.edu/linear algebra/book.pdf
- Question paper setters are asked to confine to the above **text book** only.

B.Sc., (Mathematics)

LINEAR ALGEBRA

Bloom's Taxonomy Based Assessment Pattern

Components of CIA marks						
Test (I & II)	Assi	Assignment / Seminar /		el Examination	Total	
		Subject viva				
10		5		10	25	
Continuous Inter	nal Assess	ment I & II				
Bloom's	Section	Choice		Marks	Total	
Category						
K1	А	Compulsory		$2 \ge 2 = 4$		
K1, K2	В	Either / Or		2 x 5 = 10	30	
K2, K3	С	Open Choice (2 out	of 3)	2 x 8 = 16		
Model and End S	emester E	xaminations				
Bloom's	Section	Choice		Marks	Total	
Category						
K1	А	Compulsory		5 x 2 = 10		
K1, K2	В	Either / Or		5 x 5 = 25	75	
K2, K3, K4	С	Open Choice (5 out	of 8)	5 x 8 = 40		

SEMESTER IV

CODE	COURSE TITLE
18MSUC408	REAL ANALYSIS - I

Category	CIA	ESE	L	Т	Р	Credit
CORE	25	75	42	3	-	4

Preamble

• To study both aspects of analysis, as a qualitative as well as quantitative study of functions

- To study about the order relation, real number system and sequences and their ٠ convergence and also to work comfortably with continuity
- To make the students to understand the concept and notion of pure Mathematics in a • logical fashion
- To Soak the rudiments of mathematical thinking to the students ٠

Prerequisite

Knowledge in real numbers, convergence and continuity at basic level • **Course Outcomes**

On the successful completion of the course, students will be able to

CO Number		CO Statement					
CO1	Und max	Understand the concept of partial and total orders, bounds and naximal elements, axiom of choice and its equivalents					
CO2	Dete Tria	ermine the real n ngle inequality	umber system co	oncept, LUB, Ab	solute value and	К3	
CO3	Anal sequ	Analyze the sequences and their convergence, Cauchy and monotone sequences and sandwich lemma					
CO4	Eval	Evaluate some important limits and diverging sequence					
CO5	App	ly the concept of	continuity			K5	
Mapping	Mapping with Programme Outcomes						
COs		PO5					
CO1	CO1 M S M M				S		
CO2		S	S	М	S	М	
CO3		Μ	S	S	М	S	

S – Strong; M – Medium; L–Low

CO4

CO5

S

Μ

Μ

S

Μ

S

Μ

S

S

Μ

Syllabus

Unit I

Order Relation: Partial and Total orders–Chains, Bounds and Maximal elements–Axiom of choice and its equivalents.

Unit II

Real Number System: Algebra of the real number system –Upper and lower bounds–LUB property and its applications–Absolute value and Triangle Inequality.

Unit III

Sequences and their Convergence: Sequences and their convergence–Cauchy Sequences–Monotone sequences–Sandwich lemma.

Unit IV

Sequences and their Convergence: Limits–Sequence Diverging to $\pm\infty$ –Subsequences–Sequences defined recursively.

Unit V

Toxt Book.

Continuity: Continuous Function $-\epsilon - \delta$ Definition of Continuity–Intermediate Value Theorem–Extreme Value Theorem

I UNIC D	Text Dook.					
S.No.	Author Name	Title of the Book	Publisher	Year and Edition		
1	Ajit Kumar, S. Kumaresan & Bhaba Kumar Sarma	A Foundation course in Mathematics (UNIT I)	Narosa Publishing House Pvt. Ltd.,	First Reprint 2018		
2	Ajit Kumar, S. Kumaresan	Basic Course in Real Analysis (UNIT II to V)	CRC Press, Taylor and Francis Group	Reprint 2017		

Unit	Chapter	Section
Ι	7	7.1-7.3
II	1	1.1-1.4
III	2	2.1-2.4
IV	2	2.5-2.8
V	3	3.1-3.4

(9 hrs.)

(9 hrs.)

(9 hrs.)

(10 hrs.)

(8 hrs.)

Reference Books

HUIUI CHIC	Reference Books							
S.No.	Author Name	Title of the Book	Publisher	Year and Edition				
1	Iomoo Munkaoo	Topology	Pearson Education	$2001, 2^{nd}$				
1	James Wunkles	Topology	(India)	Edition				
2	Robert G. Bartle and	Introduction to	Wiley Student	Domint 2011				
Z	Donald R. Sherbert	Real Analysis	Edition	Reprint 2011				
2	Tom M A postal	Mathematical	Addition – Wesley	20 th Reprint				
5	10111 WI.Apostor	Analysis	Publishing Company	2002				

Pedagogy

• Lecture, PPT, Quiz, Group Discussion and Seminar

Web resources

- 1. http://main.mtts.org.in/expository -articles
- 2. https://nptel.ac.in/courses/111105098/
- 3. https://math.stackexchange.com/questions/593303/online-course-for-real-analysis
- 4. <u>https://www.youtube.com/watch?v=_5t1IkCkdW0</u>
 - Question Paper Setters Confine to the above **text books** only.

B.Sc., (Mathematics)

REAL ANALYSIS - I

Bloom's Taxonomy Based Assessment Pattern

Components of CIA marks							
Test (I & II)	Ass	ignment / Seminar / Subject viva	Model Examination	Total			
10		5	10	25			
Continuous Inter	nal Assess	ment I & II					
Bloom's	Section	Choice	Marks	Total			
Category							
K1	А	Compulsory	$2 \ge 2 = 4$				
K1, K2	В	Either / Or	$2 \ge 5 = 10$	30			
K2, K3	С	Open Choice (2 out of	of 3) $2 \ge 8 = 16$				

Model and End Semester Examinations						
Bloom's	Section	Choice	Marks	Total		
Category						
K1	А	Compulsory	5 x 2 = 10			
K1, K2	В	Either / Or	5 x 5 = 25	75		
K2, K3, K4	C	Open Choice (5 out of 8)	5 x 8 = 40			

SEMESTER - IV

CODE	COURSE TITLE
15MSUS402/ 15MCUC402	MULTISKILL DEVELOPMENT PAPER

Category	CIA	ESE	L	Т	Р	Credit
SBS II	40	60	30	-	15	3

Objectives:

On successful completion of this course,

- The students will learn the document writing calculations, creation and manipulation • of tables and power point slide shows using Libre Office
- The students will be confident enough to write competitive examinations and attend interview

Syllabus

UNIT I

Communication: Question tag – Gerund and Infinitives – Spotting the errors – Vocabulary – Synonyms - Antonyms - Prepositions - Articles - One word substitution - Sentence completion.

UNIT II

Numerical Aptitude : Problems on numbers - Problems on Ages - Percentage - Profit and loss Ratio& Proportion – Time & Work – Time & Distance – Simple Interest – Compound Interest.

UNIT III

Critical Reasoning : Logical Inference Questions and Syllogism.

Analytical Reasoning : Arrangement problems – Family / Blood Relation Qualms – Sense of Directions – Age Doubts.

Verbal Reasoning : Verbal Analogy (Letter series and number series only) - Coding and Decoding.

(9hrs.)

(9hrs.)

(9hrs)

check the answer with built – in functions.

7. Prepare a power point presentation using cropping & sizing options. Use all the slide transition facilities and Rehearse timings.

2. Create a table and fit the contents to the cells. Convert the given text to table and table to

4. Build a worksheet to perform correlation and regression coefficients using formulae and

3. Illustrate the mail merge concept to apply for a suitable job for at least 5 companies

- 8. Prepare an organizational chart for a college environment using power point presentation.
- 9. Create a table with the given data using Libre Access (use adding & deleting data options).
- 10. Create a Report & Form with the given data by adding controls.

Reference	Reference books								
S.No.	Author Name	Title of the Book	Publisher	Year and Edition					
1	R.S. Aggarwal	A Modern Approach to Non-Verbal Reasoning (Fully Solved)	S.Chand Company Limited, New Delhi	Reprint 2011					
2	R.S. Aggarwal	Quantitative Aptitude	S.Chand Company Limited, New Delhi	Reprint 2015					
3	R.S. Aggarwal	Objective General English	S.Chand Company Limited, New Delhi	online					

Defenence Deele

.

5.	Worksheet	preparation for electricity bill pr	eparation.

6. Create a Pivot Table and Chart.

Unit V

Practicals - Libre Office (Units IV & V)

UnitIV

1. Use the style inspector to insert a picture, header and footer of text. Align the paragraph

with a picture at the right side of the text

text. Apply Borders & Shading.

(9hrs.)

(9hrs.)

SEMESTER – IV

COURSE TITLE MATHEMATICS FOR ALL

Category	CIA	ESE	L	Т	Р	Credit
Non-Major Elective II	-	100	27	3	-	2

Syllabus UNIT I

CODE

18MSUN402

Binomial Theorem: Introduction – Binomial Theorem – General Term of $(a + x)^n$ – Middle terms of $(a + x)^n$ – Additional Examples.

UNIT II

Simple & Compound Interest: Simple Interest – Compound Interest – Interest Compounded Continuously - Amount at the Changing Rates of Interest - Nominal and Effective Rate of Interest – Growth and Depreciation – Simple Problems

UNIT III

Annuities: Immediate Annuity and Ordinary Annuity - Annuity Due - Deferred Annuity -Perpetuity – Amortisation–Sinking Fund

UNIT IV

Interpolation: Finite Differences – Differences of a polynomial function - Newton's Forward Interpolation Formula

UNIT V

Text Book

Interpolation: Newton's Backward Interpolation Formula – Lagrange's Interpolation Formula - Inverse Interpolation

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	N.G.Das&J.K.Das	Business Mathematics and Statistics	McGraw Hill Education	2017, 1 st Edition

(6hrs.)

(6 hrs.)

(6 hrs.)

(6 hrs.)

(6 hrs.)

Units	Chapter	Sections
I	6	61 64 and 68
1	0	0.1 - 0.4 and 0.8
II	7	7.1-7.9
III	8	8.1-8.11
IV	18	18.1-18.4
V	18	18.5-18.8

Reference Book

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	P.R.Vittal	Statistics	MarghamPublications,Chennai.	2012, 6 th Edition

Pedagogy

• Lecture, PPT, Quiz, Group Discussion, Seminar

Web Resources

1.https://nptel.ac.in/courses/122103012/18

2.https://study.com/academy/lesson/compounding-interest-formulas-calculations-examples.html

3.https://swayam.gov.in/courses/5761-numerical-analysis

4.https://onlinecourses.nptel.ac.in/noc16_hs24

• Question paper setters are asked to confine to the above **text book** only.

SEMESTER – IV

NON MAJOR ELECTIVE II -MATHEMATICS FOR ALL

Question Paper Pattern

Mod	el and End Semester Examinations		
	Choice	Marks	Total
	Open Choice (5 out of 8)	5 x 20 = 100	100

SEMESTER – III

CODE	COURSE TITLE
18MSUA3P3	MATHEMATICS FOR PHYSICS – I

Category	CIA	ESE	L	Т	Р	Credit
ALLIED	20	55	70	5		4

Preamble

- To gain knowledge about different types of series like binomial, exponential and logarithmic series
- To study the fundamental concepts of ordinary differential equations and to solve
- To set forth a platform to solvefirst and higher order differential equations
- To acquire knowledge of Laplace Transforms
- To prepare students to demonstrate their understanding on applying Laplace transforms to solve ordinary differential equations

Prerequisites

• Students must know the basics of algebra, modeling, differentiation and integration

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Set forth the idea of infinite series and to apply them in real life problems	K2, K3 & K4
CO2	Study the mathematical models of physical problems and solve them	K 1
CO3	Learn the concepts of partial differential equations and apply them	K1, K3& K4
CO4	Introduce the concepts of Laplace transforms	K1 & K3
CO5	Apply Laplace transforms to solve differential equations	K2 & K4

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	S	S
CO2	S	М	S	S	М
CO3	М	S	S	S	S
CO4	S	S	S	М	S
CO5	S	S	S	S	М

S-Strong; M-Medium; L-Low

Syllabus

UNIT I

Algebra: Binomial, Exponential and Logarithmic Series – Approximations obtained by Binomial Theorem – Summation related to Binomial, Exponential andLogarithmic Series.

UNIT II

Ordinary Differential Equations (ODEs) : Basic Concepts, Modeling - Geometry Meaning of v' = f(x, y) – Direction fields – Separable ODEs , Modelling – Exact ODEs – Integrating factors.

UNIT III

Partial Differential Equations: Formation of Partial Differential Equations by eliminating Arbitrary Constants and Arbitrary Functions – Solutions of Standard Types of First Order Equations f(p,q) = 0, f(x,p,q) = 0, f(y,p,q) = 0, f(z,p,q) = 0, $f_1(x,p) = f_2(y,q)$; z = px + qy+ f(p,q)Lagrange's Method of solving LinearPartial Differential Equation Pp + Qq = R(Problems only).

UNIT IV

Laplace Transforms :Laplace Transform – Inverse Transform – Linearity – s-shifting – Transforms of Derivatives and Integrals, ODEs – Unit Step function – t-shifting – Short impulses - Dirac delta function - Partial Fractions.

UNIT V

Toxt Books

Convolution and Solving ODEs : Convolution, Integral equations - Differentiation and Integration of Transforms – Systems of ODEs – Application Problems.

I CAU	TCAT DOONS					
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition		
1.	S.Narayanan, R.HanumanthaRao and T.K.ManicavachagomPillay	Ancillary Mathematics,Book – I (Unit I)	S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai	Reprint 2015		
2.	Erwin Kreyszig	Advanced Engineering Mathematics (Unit II, IV, V)	John Wiley & Sons Inc.	2011, 9 th Edition		
3.	S.NarayananandT.K.Manica vachagomPillay	Calculus Vol.III (Unit III)	S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai	Reprint 2013		

(14 hrs.)

(15 hrs.)

(16 hrs.)

(15 hrs.)

(15 hrs.)

Units	Chapter	Sections
Ι	2 & 3	All sections
II	1	1.1-1.4
III	6	All sections
IV	6	6.1 - 6.4
V	6	6.5 - 6.8

Reference Books

Iterer en							
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition			
1.	Tom M.Apostol	Calculus Vol.1 and Vol.2	John Wiley & Sons United States	2016, 2 nd Edition			
2.	Dr. B.S.Grewal	Higher Engineering Mathematics	Khanna Publishers	2012 ,42 nd Edition			

Pedagogy

• Lecture, PPT, CAS projects, Quiz, Group Discussion, Seminar

Web Resources

- 1. https://study.com/academy/lesson/binomial-theorem-applications-examples.html
- $2. \ \underline{https://www.cliffsnotes.com/study-guides/differential-equations/first-order-equations/exact}$
- 3. https://nptel.ac.in/courses/122104018/node63.html
- 4. <u>http://lpsa.swarthmore.edu/LaplaceXform/FwdLaplace/LaplaceProps.html</u>
- 5. <u>https://users.math.msu.edu/users/sen/Math_235/Lectures/lec_14s.pdf</u>
- 6. http://hyperphysics.phy-astr.gsu.edu/hbase/Math/Inseries.html
- 7. https://www.brainkart.com/article/Partial-Differential-Equations_6484/
- 8. http://www.site.uottawa.ca/~remi/ode.pdf
- 9. http://www.sosmath.com/diffeq/first/intfactor/intfactor.html
- Question paper setters are asked to confine to the above **text books** only.

B.Sc., (Mathematics)

MATHEMATICS FOR PHYSICS – I

Bloom's Taxonomy Based Assessment Pattern

Components of CIA marks

Test (I & II)	Assignment / Seminar / Subject viva	Model Examination	Total
8	4	8	20

Continuous Internal Assessment I & II

Bloom's	Section	Choice	Marks	Total
Category				
K1	А	Compulsory	2 x 2 = 4	
K1, K2	В	Either / Or	$2 \ge 3 = 6$	20
K2, K3	C	Open Choice (2 out of 4)	$2 \ge 5 = 10$	

Model and End Semester Examinations

Bloom's Category	Section	Choice	Marks	Total
K1	А	Compulsory	5 x 2 = 10	
K1, K2	В	Either / Or	5 x 3 = 15	55
K2, K3, K4	С	Open Choice (5 out of 8)	5 x 6 = 30	

SEMESTER – III

CODE	COURSE TITLE
18MSUAPP1	LATEX AND SAGEMATH

Category	CIA	ESE	L	Т	Р	Credit
ALLIED		25			30	1

Preamble

- To give hands-on experience in the Free Open Source Software LaTex and SageMath which will be useful for teaching and research
- To visualize the mathematical concepts

Prerequisites

• Students must know the basic concepts of calculus, matrices and differential equations

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Use LaTex to create a document	K1
CO2	Use SageMath as a calculator	K1
CO3	Solve mathematical problems and to plot using SageMath	K2
CO4	Encode LaTex command in SageMath and to insert SageMath graph in a LaTex document	К3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	М	S	М
CO2	S	S	М	S	М
CO3	М	S	М	S	М
CO4	М	S	S	S	S
CO5	М	S	М	S	S

S-Strong; M-Medium; L-Low

List of Practicals

- 1. Creating a LaTex document with date, title and sections
- 2. Defining different font sizes and spacing in a LaTex document.
- 3. Creating equations using math packages for a given mathematical expression.
- 4. Creating a table in a LaTex document.
- 5. Using SageMath as a calculator and defining own function.
- 6. Declaring variables and solving single and multivariable problems in SageMath.
- 7. Plotting functions with advanced techniques in SageMath, including scatter plots.
- 8. Finding first and higher derivatives of a given function and plotting the together using SageMath.
- 9. Finding partial derivatives of a given function using SageMath.
- 10. Solving Ordinary Differential equations
- 11. Evaluating single and multiple integrals.
- 12. Defining matrices, performing algebraic operations and finding inverses of the matrices.
- 13. Finding Laplace transform of given functions using SageMath and to encode it into LaTex.
- 14. Inserting a graph from SageMath into a LaTex document.

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Gregory V.Bard	Sage for undergraduates	Online version	-

SEMESTER - III

CODE		COURSE TITLE					
18MSUA3C3	3	MATHEMATICS FOR CHEMISTRY – I					
Preamble	Preamble						
Category	CIA	ESE	L	Т	Р	Credit	
ALLIED	20	55	70	5		4	

• To focus on conceptual understanding

• To explore fundamental concepts of differential and integral calculus

• To study the basic concepts of matrices and the application of matrix theory

Prerequisites

- Students must know the different types of functions and deriving new functions from given functions
- Students must have the basic knowledge in integration
- Must know the basic formulae of differentiation and problem solving techniques

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement				Knowle	edge Level
CO1	Understand the co	oncepts of matric	es		K	1, K2
CO2	solve the system of concepts	solve the system of linear equation using matrix concepts				K2
CO3	Understand the m	eaning of differe	ntiation using lin	nits		K3
CO4	Evaluate integration of trigonometric functions					K2
CO5	Apply calculus concepts to solve real-world problems such as finding areas and volumes			ms		K3
Mapping wi	th Programme Ou	tcomes				
COs	PO1	PO2	PO3		PO4	PO5
CO1	S	М	S		S	S
CO2	М	S	М		S S	
CO3	S	М	S		M S	
CO4	S	S	S		S	S
CO5	S	S	М		S	S

S-Strong; M-Medium; L-Low

Syllabus UNITI

(14 hrs.)

Linear Algebra: Determinants, Matrices: Introduction – Determinants-Properties of determinants-matrices-Matrices operations - Related matrices - Rank of a matrix - Partition

method of finding the inverse - Solution of linear system of equations - Consistency of Linear system of Equations.

UNIT II

Linear Algebra: Determinants, Matrices: Linear transformations - Vectors- Eigen values-Properties of eigen values- Cayley – Hamilton theorem- Reduction to Diagonal form – Reduction of Quadratic form to Canonical form – Nature of a Quadratic Form.

UNIT III

Differentiation – Definition – Standard forms – Logarithmic Differentiation – Differentiation of Implicit Functions – Differentiation of one such Function with respect to Another – Successive Differentiation

UNIT IV

Integration of the types $dx/(ax^2+bx+c)$, $lx+m/(ax^2+bx+c)$, $l/\sqrt{ax^2+bx+c}$, $(px+q)/\sqrt{ax^2+bx+c}$, $\frac{1}{a\cos x+b}$, $\frac{1}{a\sin x+b}$, $\frac{1}{a^2\cos^2x+b^2\sin^2x}$ – Integration by parts-Reduction Formulae-Problems – Bernoulli's Formula – Problems.

UNIT V

Text Books

Multiple Integrals : Evaluation of Double and Triple Integrals (Problems only) – Applications to multiple integrals (Problems only).

S.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	B.S.Grewal	Higher Engineering Mathematics (Unit I, II)	Khanna Publishers	2012, 42 nd Edition
2	S. Narayanan and T.K.Manicavachagom Pillay	Calculus, Vol.I (Unit III)	S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai	Reprint 2015
3	S. Narayanan and T.K.Manicavachagom Pillay	Calculus, Vol. II (Units IV, V)	S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai	Reprint 2017

Unit	Chapter	Sections
Ι	2	2.1-2.10

(15 hrs.)

(14 hrs.)

(16 hrs.)

(16 hrs.)

II	2	2.11-2.18	
TIT	2	1-7	
III	3	1.1-1.6	
		7.3 (Rule (b) Type (i) & (ii)	
IV	1	8 Case (i) & (ii)	
	1	9,12,13,15	
V	5	2.1-5.4	

Reference Books

HULL OF				
S.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	Tom M.Apostol	Calculus Vol.1 and Vol.2	John Wiley & Sons, USA	2016, 2 nd Edition
2	James Stewart	Calculus: Early Transcendentals	Thomson Brooks/Cole, USA	2008, 2 nd Edition
2	Erwin Kreyszig	Advanced Engineering Mathematics	John Wiley & Sons, USA	2012, 9 th Edition
D 1				

Pedagogy

• Lecture, PPT, Subject Viva, Seminar, RBPT and Videos

Web Resources

- 1. <u>https://ocw.mit.edu/courses/mathematics/18-01-single-variable-calculus-fall-2006/video-lectures/</u>
- 2. <u>http://www.math.odu.edu/~jhh/Volume-1.PDF</u>
- 3. http://www.math.odu.edu/~jhh/Volume-2.PDF
- 4. <u>https://www.khanacademy.org/math/algebra-home/alg-system-of-equations/alg-equivalent-systems-of-equations/v/solving-systems-of-equations-by-elimination</u>
- 5. <u>https://www.youtube.com/watch?v=SJOTtb1FTfs</u>
- 6. https://www.khanacademy.org/math/linear-algebra/alternate-bases/eigeneverything/v/linear-algebra-introduction-to-eigenvalues-and-eigenvectors
 - Question paper setters are asked to confine to the above **text books** only.

II B.Sc., (Chemistry)

MATHEMATICS FOR CHEMISTRY – I

Bloom's Taxonomy Based Assessment Pattern

Components of CIA marks							
Test (I & II)	Ass	ignment / Seminar / Subject viva	Model Examination	Total			
8		4	8	20			
Continuous Inter	Continuous Internal Assessment I & II						
Bloom's	Section	Choice	Marks	Total			
Category							
K1	А	Compulsory	$2 \ge 2 = 4$				
K1, K2	В	Either / Or	$2 \ge 3 = 6$	20			
K2, K3	С	Open Choice (2 out o	of 4) $2 \ge 5 = 10$				

Model and End Semester Examinations							
Bloom's	Bloom's Section Choice Marks						
Category							
K1	А	Compulsory	5 x 2 = 10				
K1, K2	В	Either / Or	5 x 3 = 15	55			
K2, K3, K4	C	Open Choice (5 out of 8)	$5 \ge 6 = 30$				

SEMESTER – III

CODE	COURSE TITLE
18MSUAPC1	SAGE MATH & OCTAVE

Category	CIA	ESE	L	Т	Р	Credit
Allied Practical					30	1
D						

Preamble

- To give hands-on experience in the Free Open Source Software SageMath and Octave which will be highly useful for future teachers and researchers
- To visualize the mathematical concepts for better understanding
- To inculcate the mathematical concepts through Free Math open software SageMath and Octave

Prerequisites

• Students must know the basic concepts of matrices, differentiation and integration

Course Outcomes

On the successful completion of the course, students will be able to

COs	CO Statement	Knowledge Level
CO1	Use SageMath as a calculator	K3
CO2	Solve the problems on matrices	K3
CO3	Make use of theoretical concepts to solve problems and visualize the output	К3
CO4	To visualize the geometry through these software	K3

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

S-Strong; M-Medium; L-Low

List of Practical

- 1. Use SageMath as a calculator A financial example
- 2. Solve quadratic equations
- 3. Define 3×3 matrix and find the transpose of a given matrix
- 4. Find the matrix multiplication for $n \times n$, n=1,2,3
- 5. Evaluate the determinant and find the inverse of a given matrix
- 6. Find the eigenvalues and eigenvectors of a given matrix
- 7. Solve the linear system of equations with single variable
- 8. Solve the system of equations using 3 variables
- 9. Find the root of a polynomial
- 10. Find the surface area using double integral
- 11. Find the volume using triple integral
- 12. Use Sage to calculate definite integral and plot
- 13. Use Sage to calculate indefinite integral
- 14. Apply Sage to balance the chemical reaction using matrices
- 15. Find the area of circle
- 16. Use Sage to find derivatives & plot f (x) and f '(x) Together and find Higher-Order Derivatives

Text Do							
S.No.	Author Name	Title of the Book	Publisher	Year and Edition			
1	Gregory V. Bard	Sage for Undergraduates	American Mathematical Society, Providence, Rhode Island	2015, edition			

Text Book

SEMESTER - III

CODE	COURSE TITLE
18MAUA303	MATHEMATICS FOR COMMERCE

Category	CIA	ESE	L	Т	Р	Credit
Allied	25	75	80	10	-	5

Preamble

• To develop the basic knowledge and skills in mathematics to deal with business problems

Prerequisite

• Must know about all types of number systems, their properties and about logarithms and basic algebraic operations with numbers

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Learn about HCF, LCM, Progressions and about Ratios and Proportion.	K1, K2
CO2	Study the concept of matrices and applying it to solve simultaneous linear equations	K2
CO3	Acquire knowledge about mathematics of finance	К3
CO4	Know the concept of differentiation and its application to business problems.	K2, K3
CO5	Learn the concept of integration and its application in business economics.	K2

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO6	М	S	L	S	М
CO7	S	S	L	S	S
CO8	S	S	М	S	S
CO9	S	S	М	М	S
CO10	М	S	М	М	S

S-Strong; M-Medium; L-Low

Syllabus

UNIT I

(18

hrs.)Number System : Introduction – Natural Number System – Highest Common Factor – Least Common Multiple – Progression – Arithmetic Progression–Arithmetic mean–Geometric Progression – Geometric Mean – Ratios – Proportion – Mixtures.

Unit II

Matrices :Introduction – Types of matrices – Algebra of matrices – Transpose of a matrix – Determinants – Inverse of a matrix – Solution of simultaneous equations –Rank of a matrix.

Unit III

Mathematics of Finance : Simple Interest – Compound Interest – Effective and Nominal Rate of Interest – Depriciation – Annuities

Unit IV

Discounting of Bills : Sinking fund – Amortization table –Discounting – Banker's Discount – True Discount – Banker's Gain – Cash Value – Actual Rate of Interest – Equated Due Date.

Unit V

Applications of Differentiation :Introduction to Differentiation – Elasticity – Elasticity of Demand – Elasticity of Supply – Marginal Cost and Marginal Revenue – Relation between Marginal Revenue & Elasticity of Demand – Maxima and Minima.

Applications of Integration: Introduction to Integration – Calculation of Cost function –Calculation of Revenue function.

Case Studies:

- Calculate Secondary overhead distribution summary using Simultaneous Equations method
- Preparation of Bank statement
- Applications of matrix in Business Problems
- Develop an Amortization table for Loan amount EMI calculation
- Obtain the revenue function for *x* units of sales & find the marginal revenue

S.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	M.Wilson	Business Mathematics(Units I, II and V)	Himalaya Publishing House, Mumbai	Reprint 2016
2	P.A. Navnitham	Business Mathematics & Statistics (Units III and IV)	Jai Publishers, Trichy	Reprint2017

Text Books

(18 hrs.)

(18 hrs.)

(17 hrs.)

(19 hrs.)

Reference Books						
S.No.	Author Name	Title of the Book	Publisher	Year and Edition		
1	B.C.Mehta and G.M.K. Madnani	Mathematics for Economists	Sultan Chand &Sons, New Delhi	Reprint 2004		

Pedagogy

• Lecture, PPT, Subject Viva, Seminar, Case Studies and Videos

Web Resources

- 1. <u>https://www.youtube.com/watch?v=Bdrwcjg8W_w&t=36s</u>
- 2. <u>https://www.youtube.com/watch?v=rS9AwyRbB7g</u>
- 3. https://www.youtube.com/watch?v=NvVKOO1pY5g&t=37s
- 4. <u>https://www.youtube.com/watch?v=7Nz06RhcA8Y&t=64s</u>
- 5. https://www.youtube.com/watch?v=gEpYrtKCgt8
- Question paper setters are asked to confine to the above **text books** only

II B.Com

MATHEMATICS FOR COMMERCE

Bloom's Taxonomy Based Assessment Pattern

Components of CIA marks						
Test (I & II) A		ignment / Seminar / Subject viva	Model Examination	Total		
10		5	10	25		
Continuous Inter	nal Assess	ment I & II				
Bloom's	Section	Choice	Marks	Total		
Category						
K1	А	Compulsory	$2 \ge 2 = 4$			
K1, K2	В	Either / Or	2 x 5 = 10	30		
K2, K3	C	Open Choice (2 out of	f 3) $2 \times 8 = 16$			
Model and End S	emester E	xaminations				
Bloom's	Section	Choice	Marks	Total		
Category						
K1	А	Compulsory	5 x 2 = 10			
K1, K2	В	Either / Or	5 x 5 = 25	75		
K2, K3, K4	С	Open Choice (5 out of	f 8) $5 x 8 = 40$			

SEMESTER – IV

CO	DE	COURSE TITLE					
18MSU	J A4P4	MATHEMATICS FOR PHYSICS – II					
Category	CIA	ESE	L	Т	Р	Credit	

5

--

4

70

Preamble

ALLIED

20

• To introduce multiple integrals and learn their applications

55

- To put forth the concepts of application of multiple integrals and to evaluate improper integrals
- To acquire the knowledge of Fourier series to various wave forms
- To assimilate the concepts of Fourier integrals

Prerequisites

Students must know the basic mathematical concepts at higher secondary level.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Introduce the concepts of vectors and to apply in physical problems	K1 & K3
CO2	Evaluate multiple integrals in both Cartesian and polar coordinates	K1
CO3	Apply multiple integrals to find area under a given curve and to evaluate improper integrals	K1 ,K3 & K4
CO4	Find the Fourier series to various functions	К2
CO5	Learn the Fourier integrals for odd and even functions	K1

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	М	S
CO2	М	S	S	S	S
CO3	S	S	S	S	М
CO4	S	М	S	S	S
CO5	S	S	S	S	S

S-Strong; M-Medium; L-Low

Vector Calculus :Vectors in 2-Space and 3-Space – Inner Product – Vector product – Vector and Scalar Functions and Fields – *Derivatives* – Curvature - Torsion - Gradient of a Scalar Field – Directional Derivative – Divergence of a Vector Field – Curl of a Vector Field – *Simple Problems*.

UNIT II

Integration: Multiple Integrals – Evaluation of Double Integrals (Excluding Changing the Order of Integration) – Double Integrals in Polar coordinates – *Evaluation of Triple Integrals*

UNIT III

Application of Integration:*Application of Double integral in Evaluating Area Between Curves*– Jacobian of Two and Three Variables – Beta and Gamma Functions – Relation – Evaluation of Double and Triple Integrals using Beta and Gamma Functions.

UNIT IV

Fourier Series :Fourier Series – Functions of any Period p=2L – Even and Odd Functions, *Half* –*Range Expansions*.

Fourier Integral : Fourier Integral – Fourier Cosine and Sine Transforms – Simple Problems.

UNIT V

Text Books

Numerical Integration :Introduction – General QuadratureFormula for Equidistant Ordinates – Trapezoidal Rule – Simpson's One-Third Rule – *Simpson's Three – Eighth's rule*

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Erwin Kreyszig	Advanced Engineering Mathematics (Units I, III, V)	John Wiley & Sons Inc.	2011, 9 th Edition
2.	S.Narayanan&T.K.M.Pillay	Calculus Vol.II (Units I, II)	Viswanathan, S., Printers & Publishers Pvt. Ltd., Chennai	2012, edition

(16 hrs.)

(14 hrs.)

(15 hrs.)

(14 hrs.)

(16 hrs.)

			New Age	
2	C ShankarDaa	Numerical Analysis	International	$2018, 5^{\text{th}}$
5.	G.SnankerRao	(Unit IV)	Publishers, New	edition
			Delhi	

Units	Chapters	Sections
I	9	9.1 – 9.5 & 9.7 – 9.9
Ĩ	5	2.1,2.2,3.1,3.2,4
Ш	5.6 and 7 5.1-5.4,1.1&1.2 and2.1	
п	5,0 and 7	2.3,3,4,5,6
III	11	11.1 – 11.3 & 11.7 – 11.8
IV	9	9.1 - 9.5
V	9	9.1 – 9.5 & 9.7 – 9.9

Reference Books							
Sl.No.	Author NameTitle of the BookPublisher		Year and Edition				
1.	B.S.Grewal	Higher Engineering Mathematics	Khanna Publishers, New Delhi	2014, 43 rd Edition			
2.	K.F.Riley, M.P.Hobson & S.J.Bence	Mathematical Methods for Physics and Engineering	Cambridge University Press	2018,3 rd Edition			

Pedagogy

• Lecture, PPT, Quiz, Group Discussion, Seminar

Web Resources

- <u>https://betterexplained.com/articles/category/math/vector-calculus/</u>
- <u>https://www.whitman.edu/mathematics/calculus_online/chapter15.html</u>
- https://courses.lumenlearning.com/boundless-calculus/chapter/multiple-integrals/
- https://study.com/academy/lesson/gamma-function-properties-examples.html
- http://w.astro.berkeley.edu/~jrg/ngst/fft/comms.html
- https://www.youtube.com/watch?v=tp_MdKz3fC8
- https://www.youtube.com/watch?v=DYsv6L-VcsQ
- <u>http://www.damtp.cam.ac.uk/lab/people/sd/lectures/nummeth98/integration.htm</u>
- https://en.wikibooks.org/wiki/Numerical_Methods/Numerical_Integration
- Question paper setters are asked to confine to the above **text books** only.

B.Sc., (Mathematics)

MATHEMATICS FOR PHYSICS – II

Bloom's Taxonomy Based Assessment Pattern

Components of CIA marks					
Test (I & II)	Assignment / Seminar / Subject viva	Model Examination	Total		
8	4	8	20		

Continuous Internal Assessment I & II

Bloom's Category	Section	Choice	Marks	Total
K1	А	Compulsory	2 x 2 = 4	
K1, K2	В	Either / Or	$2 \ge 3 = 6$	20
K2, K3	C	Open Choice (2 out of 4)	$2 \ge 5 = 10$	

Model and End Semester Examinations							
Bloom's Category	Bloom's CategorySectionChoiceMarks						
K1	А	Compulsory	5 x 2 = 10				
K1, K2 B		Either / Or	5 x 3 = 15	55			
K2, K3, K4	C	Open Choice (5 out of 8)	5 x 6 = 30				

SEMESTER - IV

CODE	COURSE TITLE
18MSUAPP2	OCTAVE

Category	CIA	ESE	L	Т	Р	Credit
ALLIED		25			30	1

Preamble

- To give hands-on experience in the Free Open Source Software Octave which is an excellent tool for teaching and research
- To visualize the mathematical concepts in 2D and 3D

Prerequisites

• Students must know the basic concepts of calculus, matrices, differential equations, statistical tools and number theory.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Use Octave as a calculator	K1
CO2	Plot graphs to improve presentations	K2
CO3	Visualize the mathematical concepts through 3D plots	K2
CO4	Learn looping concept to various mathematical problems	К3

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	М	S	М	S	М
CO2	S	S	М	S	М
CO3	М	S	М	S	М
CO4	М	S	S	S	S
CO5	М	S	М	S	S

S-Strong; M-Medium; L-Low

List of Practicals

- 1. Using octave as a calculator and learning built-in functions.
- 2. Defining vectors and matrices and performing basic algebraic operations.
- 3. Plotting 2D graphs and editing.
- 4. Plotting 3D graphs for any given functions.
- 5. Solving simultaneous linear equations.
- 6. Finding mean, median, mode, range, standard deviation and variance of a given data.
- 7. Defining sets and performing various set operations.
- 8 Solving differential equations of first and second order.
- 9 Finding arithmetic Progression and Geometric Progression.
- 10 Finding sum of *n* natural numbers and sum of square of *n* natural numbers

SEMESTER – IV

CODE
18MSUA4C4

COURSE TITLE

MATHEMATIS FOR CHEMISTRY – II

Category	CIA	ESE	L	Т	Р	Credit
ALLIED	20	55	70	5	-	4

Preamble

- To acquire complete knowledge of summation and approximation through Binomial, Exponential and Logarithmic series
- To understand concepts and improve problem solving skills on theory of equations
- To provide basic knowledge about statistics and its applications and interpreting the results obtained

Prerequisite

- Knowledge in basic concepts of series, equations and types of equations
- Must have a knowledge about collection of data, classification and tabulation

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Find the sum of finite and infinite Binomial, Exponential and Logarithmic series	K1
CO2	Solve equations using various techniques	K2
CO3	To learn about various measures of central tendencies and their appropriate usage	К3
CO4	To study the measures of dispersion	K3
CO5	To understand the relationship between the variables under consideration	K2

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	М	М	S	S
CO5	М	М	М	S	S

S-Strong; M-Medium; L-Low

Syllabus

UNIT I

Binomial, Exponential and Logarithmic Series: Theorems – Statements without proofs – Emphasize on their Immediate application to Summation and Approximation. (Problems only)

UNIT II

Theory of Equations: Roots of an Equation – Relations Connecting the Roots and Coefficients -- Transformations of Equations -- Descarte's Rule of Signs, Horner's Method upto Two Decimal Places

UNIT III

Diagrams and Measures of Central tendency : Diagrammatic Presentation - Bar and Pie Diagrams – Graphic presentation – Graph of Frequency Distribution. Measures of Central Tendency - Averages - Simple and Weighted - Mean, Median, Mode, Geometric Mean and Harmonic Mean -Their– Computation Properties and Uses (Problems only)

UNIT IV

Measures of Dispersion : Range, Coefficient of Range, Quartile Deviation, Coefficient of Quartile Deviation – Mean Deviation, Coefficient of Mean Deviation, Standard Deviation and Coefficient of Variation. (Problems only)

UNIT V

Correlation and Regression: Correlation – Meaning and Definition – Scatter Diagram – Pearson's Coefficient of Correlation - Rank Correlation - Computation and interpretation - Regression -Properties of Regression Coefficient - Meaning of Regression - Regression Equations -Mathematical properties of Regression coefficient – Uses of Regression (Problems only)

Case Studies

- Effect of Hardness of water
- Total dissolved solids
- Chloride content in water sample
- Waste disposal in your locality
- How to identify the pesticides present in fruits, vegetables and beverages
- Effect of ammonia in cosmetics (For e.g. Hair dye, Shampoo, etc.,)
- Effect of pH in toilet soap and bath soap

Text Books

S.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	T. Natarajan, T.K. Manicavachagom Pillay &	Algebra –Vol. I (Units I, II)	S.Viswanathan Printers and Publishers Pyt	Reprint 2015

(16 hrs.)

(16 hrs.)

(14 hrs.)

(16 hrs.)

(13 hrs.)

	K.S.Ganapathy		Ltd., Chennai.	
2	R.S.N Pillai,	Statistics: Theory and	Sultan Chand &	Reprint 2015
	Bagavatni	(Unit III to V)	Co., New Delhi	-

Unit	Chapter	Sections
Т	3	1,5-6,10
1	4	1,2,3,5,6
Ш	6	1-11,15-15.3,24,30
III	7,9	All Sections
IV	10	All Sections
V	12,13	All Sections

Reference Books				
S.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	R.M. Khan	Algebra - Classical, Modern, Linear & Boolean	New central Book Agency(P) Ltd., Kolkata	Reprint 2016
2	H.S. Hall & S.R.Knight	Higher Algebra	AITBS Publishers, India	Reprint 2014
3	Erwin Kreyszig	Advanced Engineering Mathematics	John Wiley & Sons, USA	2012, 9 th Edition
4	PA. Navnitham	Business Mathematics & Statistics	Jai Publishers, Trichy	Reprint 2017
5	P.R.Vittal	Business Mathematics & Statistics,	Margham Publications, Chennai	Reprint 2002

Pedagogy

• Lecture, PPT, Quiz, Assignment, Group Discussion, Seminar and Subject Viva

Web Resources

- 1. http://nptel.ac.in/courses/106105162/18
- 2. http://nptel.ac.in/courses/111106083/33
- 3. <u>https://www.khanacademy.org/math/algebra2/polynomial-functions/fundamental-theorem-of-algebra/v/possible-real-roots</u>
- 4. <u>http://www.math.kent.edu/~white/FCA/text/jan09ed.pdf</u>
5. http://www.gutenberg.org/files/29785/29785pdf.pdf?session_id=1888afffae379b4647cad5675a6b169d2543f267

• Question paper setters are asked to confine to the above **text books** only

II B.Sc., (Chemistry)

MATHEMATICS FOR CHEMISTRY – II

Bloom's Taxonomy Based Assessment Pattern

Components of CIA marks					
Test (I & II)	Assi	gnment / Seminar /	Model Examination	Total	
		Subject viva			
8		4	8	20	
Continuous Internal Assessment I & II					
Bloom's	Section	Choice	Marks	Total	
Category					
K1	А	Compulsory	2 x 2 = 4		
K1, K2	В	Either / Or	$2 \times 3 = 6$	20	
K2, K3	C	Open Choice (2 out	of 4) $2 \ge 5 = 10$		

Model and End Semester Examinations					
Bloom's	Section	Choice	Marks	Total	
Category					
K1	A	Compulsory	5 x 2 = 10		
K1, K2	В	Either / Or	5 x 3 = 15	55	
K2, K3, K4	C	Open Choice (5 out of 8)	5 x 6 = 30		

CODE	COURSE TITLE
18MSUAPC2	R SOFTWARE

Category	CIA	ESE	L	Т	Р	Credit
Allied Practical		25			15	1

Preamble

• To apply the statistical knowledge acquired through the theory course

Prerequisite

• To be familiar with the basic statistical concepts of measures of central tendency, measures of dispersion, descriptive statistics, correlation, regression and basic computer knowledge.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level		
CO1	Be equipped with the professional competency through learning Free Open Source Software – R	К3		
CO2	Create the database, visualizing and analyzing the data using R	K2		
CO3	Make inferences through the results obtained	K4		
Mapping with Programme Outcomes				

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	S	S
CO2	S	S	М	S	S
CO3	S	S	М	S	S

S-Strong; M-Medium; L-Low

List of practicals

- 1. Using R software as a calculator
- 2. Data entry, manipulation and retrieval (Notepad, Excel sheet)
- 3. Data frame, creating matrices and operations with matrices
- 4. To calculate mean, median, Standard deviation, Variance
- 5. To determine a confidence interval for the populations' mean
- 6. To calculate the correlation between amount of fertilizers and yield of crops
- 7. To create a histogram for the mean in an interval of 30 days and interpret result with normal probability plot
- 8. To create different types of bar chart of the daily nutritional requirements
- 9. To create a piechart of pH values in different kinds of bath soap and in different kinds of detergent cake
- 10. To create a box plot of amount of citric acid content in various soft drinks
- 11. Fitting of linear regression line and plot
- 12. To find multiple linear regression and partial correlation between the pH level of soil, amount of fertilizer used and yield of crops

KUUUU	Alterence books						
S .No.	Author Name	Title of the Book	Publisher	Year and Edition			
1	Sarah Stowell	Using R for Statistics	Apress, USA	2014, 1 st Edition			
2	Getting Started with R	Paul Tetor	O'Reilly Media, Inc., Sebastopol, CA	Reprint April 2016			
3	Kim Seefeld and Ernst Linder	Statistics Using R with Biological Examples	https://cran.r- project.org/doc/contri b/Seefeld_StatsRBio.p df	online			

Reference Books

CODE	COURSE TITLE
18MAUA404	STATISTICS FOR COMMERCE

CATEGORY	CIA	ESE	L	Т	Р	Credit
ALLIED	25	55	56	4	-	4

Preamble

• To provide basic knowledge about statistics and its applications and interpreting the results obtained.

Prerequisite

• Must possess knowledge about collection of data, classification and tabulation.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Learn about various measures of central tendencies and their appropriate usage.	K2, K3
CO2	Study the measures of dispersion.	K3
CO3	Understand the relationship between the variables under consideration.	К3
CO4	Find the missing values in the given data using interpolation.	K3
CO5	Know the concepts of index numbers and time series analysis	K2

Mapping with Programme Outcomes

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	М	М	S	S
CO5	М	М	М	S	S

S-Strong; M-Medium; L-Low

Syllabus UNIT I

Diagrams and Measures of Central Tendency : Diagrammatic Presentation – Bar and Pie Diagrams – Graphic presentation –Graph of Frequency Distribution.Measures of Central Tendency – Averages – Simple and Weighted – Mean, Median, Mode, Geometric Mean and Harmonic Mean – Their Computation – Properties and Uses.

UNIT II

Measures of Dispersion : Range, Coefficient of Range, Quartile Deviation, Coefficient of Quartile Deviation – Mean Deviation, Coefficient of Mean Deviation, Standard Deviation and Coefficient of Variation.

UNITIII

Correlation and Regression: Correlation – Meaning and Definition – Scatter Diagram – Pearson's Coefficient of Correlation – Rank Correlation – Computation and interpretation – Regression – Properties of Regression Coefficient – Meaning of Regression – Regression Equations – Mathematical properties of Regression coefficient – Uses of Regression.

UNIT IV(12 hrs.)

Index Numbers and Interpolation : Index Numbers – Meaning – Uses – Methods of Construction – Aggregative and Relative Types – Tests of consistency of index Number – Consumer price index Number – Methods of Construction– Interpolation – Binomial method – Method of advancing differences – Newton's method of backward differences – Lagrange Method .

UNIT V

Analysis of Time Series: Meaning – Time series Components – Models – Measurement of Secular Trend – Measurement of Seasonal Variation.

Case Studies:

- Collect marks scored by 150 students in an examination and make a frequency distribution table, subject wise and class wise.
- Collect data relating to prices of shares of two companies for ten days and ascertain stability of share prices.
- Select 10 items of daily consumed products and collect base year quantity, base year price and current year price in your street/place. Calculate Cost of Living Index.
- Fit a straight line trend for the production of a company for 10 years & forecast the future trend.
- Collect the sales & profit of 10 items in a shop and find the correlation between sales and profit.

(13 hrs.)

(12 hrs.)

(12 hrs.)

(11 hrs.)

Text Bo	oks			
S.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	R.S.N Pillai, Bagavathi	Statistics Theory and Practice	Sultan Chand & Co., New Delhi	Reprint 2015

Reference Books					
S.No.	Author Name	Title of the Book	Publisher	Year and Edition	
1	PA. Navnitham,	Business Mathematics & Statistics	Jai Publishers, Trichy	Reprint 2017	
2	P.R.Vittal	Business Mathematics & Statistics	Jai Publishers, Trichy,	Reprint 2004	

Pedagogy

• Lecture, PPT, Subject Viva, Seminar, Case Studies and Videos

Web Resources

1. <u>https://www.youtube.com/watch?v=JPK0LFsu18g</u>

2.<u>https://www.youtube.com/watch?v=_ntErigkhEA</u>

3.<u>https://www.youtube.com/watch?v=xTpHD5WLuoA&t=135s</u>

4.<u>https://www.youtube.com/watch?v=jd_KUEUt4Dg</u>

5.https://www.youtube.com/watch?v=d4Sn6ny_5LI

• Question paper setters are asked to confine to the above **text book** only.

II B. Com

STATISTICS FOR COMMERCE

Bloom's Taxonomy Based Assessment Pattern

Components of CIA marks						
Test (I & II)	Ass	ignment / Seminar / Subject viva	Model Examination	Total		
8	8 4		8	20		
Continuous Internal Assessment I & II						
Bloom's	n's Section Choice		Marks	Total		
Category						
K1	А	Compulsory	2 x 2 = 4			
K1, K2	В	Either / Or	$2 \ge 3 = 6$	20		
K2, K3	C	Open Choice (2 out of	(4) $2 \ge 5 = 10$			

Model and End Semester Examination

Bloom's	Bloom's Section Choice		Marks	Total
Category				
K1	A	Compulsory	5 x 2 = 10	
K1, K2	В	Either / Or	5 x 3 = 15	55
K2, K3, K4	C	Open Choice (5 out of 8)	5 x 6 = 30	

CODE	COURSE TITLE
18MAUAP01	STATISTICAL SOFTWARE R

Category	CIA	ESE	L	Т	Р	Credit
Allied Practical		25			15	1

Preamble

• To apply the statistical knowledge acquired through the theory course

Prerequisite

• To be familiar with the basic statistical concepts of measures of central tendency, measures of dispersion, descriptive statistics, correlation, regression and basic computer knowledge.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number		CO Statement				
CO1	Be equipped with Free Open South	Be equipped with the professional competency through learning Free Open Source Software – R				
CO2	Create the data	K2				
CO3	Make inferences through the results obtained			K4		
Mapping with Programme Outcomes						
COs	PO1	PO2	PO3	PO4	PO5	

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	S	S
CO2	S	S	М	S	S
CO3	S	S	М	S	S

S-Strong; M-Medium; L-Low

List of practicals

- 1. Using R software as a calculator.
- 2. Data entry, manipulation and retrieval (Notepad, Excel sheet).

3 Data frame, creating matrices and operations with matrices.

- 4. Descriptive statistics, Graphics pie diagram, box plot, histogram, bar plot.
- 5. Object orientation, defining functions.

6. Find mean, median, geometric mean, harmonic mean of numerical data and edit the output.

- 7. Determine standard deviation, variance and checking the consistency of the given data and edit the output.
- 8. Find the range and skewness for the given data.
- 9. Bivariate data- scatter plot, correlation co-efficient, fitting linear regression line.
- 10. Multiple linear regression models.
- 11. Analysis of Variance (ANOVA).

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition	
1	W. John Braun and Duncan J. Murdoch	A First Course in Statistical Programming with R	Cambridge University Press, NewYork	2007, edition	
2	J H Maindonald	Using R for Data Analysis and Graphics: Introduction, Code and Commentary	https://cran.r- project.org/doc/contrib/us ingR.pdf	2008, edition	
3	Kim Seefeld and Ernst Linder	Statistics Using R with Biological Examples	https://cran.r- project.org/doc/contrib/Se efeld_StatsRBio.pdf	online	

Reference Books

CODE		COURSE TITLE				
18MSUSL02		ASTRONOMY				
Syllabus	Syllabus					
Category	CIA	ESE	L	Т	Р	Credit
Self Learning	-	100	-	-	-	5

UNIT I Introduction – Telescopes–Binoculars -The Solar System – The Sun –The Moon.

UNIT II Planets – The Inner Planets – The Outer Planets – Comets, Meteors and Meteorites.

UNIT III Eclipses and Occultation – Eclipses and Occultation – Heavenly Lights.

UNIT IV The Stars – Nebulae – Galaxies.

UNIT V Professional Observatories – Amateur Observatories – Making your own Observatory – Recording Observations – Astrophotography – Making a Simple Astrophotography Mount.

Text Book

I CAU DOG	T CAT D OOK						
S.No.	Author Name	Title of the Book	Publisher	Year and Edition			
1.	Brian Jones	The Beginner's guide to Astronomy	Artists House, London.	1991, 1 St Edition			

Units	Page No.
I	7-21
II	22-27
III	28-31
IV	32-47
V	96-107

Reference Books					
S.No.	Author Name	Title of the Book	Publisher	Year and Edition	
	S.Kumaravelu		Muruga Bhavanam,		
1.	and Susheela	Astronomy	Chidhambaranagar,	1995, edition	
	Kumaravelu		Nagercoil - 629 002		
2	Detrial Maara	The Guinness Book of	Guinness	1092 2 nd Edition	
۷.	Faulck Moole	Astronomy	Superlatives Limited	1965, 2 Euluoli	
2	Valerie	Macmillan Dictionary	Macmillan Press	1085 2 nd Edition	
3.	Illingworth	of Astronomy	London	1963, 2 Edition	
Web Resources					

- 1. https://www.timeanddate.com/eclipse/binoculars-telescope-projector.html
- 2. <u>http://www.sun.org/encyclopedia/asteroids-meteoroids-meteors-meteorites-comets</u>
- 3. <u>https://www.britannica.com/science/eclipse/solar -eclipse-phenomena</u>
- 4. <u>https://www.britannica.com/science/nebula</u>
- 5. https://astrobackyard.com/beginner-astrophotography/
 - Question Paper Setters are asked to confine to the above **text book** only