SEMESTER I

ALLIED – I : PAPER – I

MATHEMATICAL STATISTICS – I

Instructional Hrs. : 105

Max.Marks: CIA – 25; ESE – 75

Objective:

- To study about the random variables.
- The students will be able to apply statistical tools in real life problems as well as in research.
- The contents of this paper is a prerequisite for learning SPSS package.

Random Variables : Random Variable – Cumulative Distribution Function – Continuous Random Variable – Two Dimensional Random Variable – Marginal Probability Distribution – Conditional Probability Distribution – *Independent Random Variables*.

UNIT II

UNIT I

Characteristics of Distributions : Expectation or Mean Value – Function of a Random Variable – Properties of Expected Values. Variability (or dispersion) – *Properties of Variance* – Sample Mean and Sample Variance – Mean and Standard Deviation of the Combination of Two samples – Frequency Table – Tchebchev's Inequality.

UNIT III

Characteristics of Distributions : Moments – Moment Generating Function – Measures of Location - Measures of Dispersion – Skewness – Kurtosis – Covariance – Sample Correlation Coefficient - Correlation for a Grouped Data – *Rank Correlation*.

Sub.Code : 16MCUA101

Credits : 5

21 Hrs.

21 Hrs.

Least Square and Regression Analysis : Curve Fitting – Principle of Least Squares – Fitting a Straight Line – Fitting a Second Degree Polynomial – To Fit a Curve of the form $y = ae^{bx}$, $y = ab^x$, $y = ab^x$, $y = ax^b$ - Regression of First Kind – Regression of Second Kind – Scatter Diagram – Lines of Regression – *Regression Line of Y on X* – Properties of Regression Coefficient – Angle between the Regression Lines.

UNIT V

21 Hrs.

Discrete Distribution and Continuous Distributions : *Binomial Distribution* – Poisson Distribution – Continuous Distribution : Normal Distribution – Rectangular Distribution(Uniform Distribution) – Exponential Distribution.

Note : Italics denotes Self Study Topics.

TEXT BOOK:

1. S.Venkataraman, P.R.Vittal., Mathematical Statistics, 1973.

Unit	Chapter	Sections	Page No
Ι	2	2.1, 2.2, 2.3, 2.5, 2.6, 2.7, 2.8	39-70
II	3	3.1, 3.2, 3.3, 3.4 - 3.8	73-110
III	3	3.9 - 3.19	111-157
IV	11	11.1 - 11.4, 11.7 - 11.14	379-405
V	4 & 5	4.1, 4.2, 5.1, 5.2, 5.3	163-198, 203-241

• Question Paper setters are asked to confine to the **above text book only**.

SEMESTER - II

CORE PAPER - IV TRIGONOMETRY AND VECTOR ANALYSIS

Instructional Hrs. 75

Sub. Code: 16MCUC204

Max. Marks: CIA -25; ESE -75

Objective: This paper deals with Expansion of Trigonometric Functions, Line Iintegral, Surface Integral and Volume Integral.

UNIT I

Expansions : Expansions of $\cos n\theta$, $\sin n\theta$, $\tan n\theta$, $\cos^n\theta$ and $\sin^n\theta$ - Hyperbolic Functions : Hyperbolic Functions - Relations between Hyperbolic Functions - Inverse Hyperbolic Functions - Logarithms of a Complex Quantities : Logarithms of a Complex Quantities - Summation of Trigonometrical Series : Method of Differences - When angles are in A.P - Summation of Series by using Complex Quantities.

UNIT II

Spherical Trigonometry: Geometry of the Sphere - Length of a Small Circle Arc - Latitude and Longitude - Spherical Triangle - Cosine Formula - Sine Formula - Supplemental Cosine Formula - Cotangent Formula or Four Consecutive Parts Formula - Sine-Cosine Formula -Formula for Half Angles - Formula for Half a Side- Napier's Analogies - Delambre's Analogies - Formulae for a Right-Angled Triangle - Solution of Right-Angled Spherical Triangle.

UNIT III

Differentiation of Scalar and Vector Point Functions: Scalar and Vector functions - Level Surfaces - Directional derivative of a Scalar Point Function - Gradient of a Scalar Point Function - Summation notation for Gradient - Gradient of f(r) - Divergence and Curl of a Vector Point Function - Summation notation for Divergence and Curl - Laplacian Differential Operator -Other Differential Operators - Divergence and Curl of a Gradient -Divergence and Curl of a Curl - Examples.

15 Hrs.

Credits: 4

15 Hrs.

UNIT IV

Integration of Point Functions: Line Integrals - Independence of Path of Integration -Conservative Field and Scalar Potential - *Line Integral of a Conservative Vector* - Surface Integrals - Volume Integrals - Cylindrical and Spherical Polar Coordinates - Examples.

UNIT V

15 Hrs.

Integral Theorems: Integral Theorems - Gauss' Divergence Theorem - Integral Theorems Derived from the Divergence Theorem - Green's Theorem in Plane - Stoke's Theorem - Integral Theorems Derived from Stoke's Theorem - *Operational meanings of* ∇ , ∇ ., $\nabla \times$ *in terms of surface integrals* - Examples.

Note : Italics denote Self Study Topics

TEXT BOOKS

1. S.Narayanan and T.K .Manicavachagom Pillay., *Trigonometry*, S.Viswanathan Publishers, 2004.

Unit	Chapter	Section	Page.No
	3	1, 2, 3, 4, 5	61 - 92
Ι	4	1, 2	93 - 108
	5	5	122 - 130
	6	1, 2, 3	131 - 148

 Dr.B.S.Grewal., *Higher Engineering Mathematics*, Khanna Publishers, 35th Edition, August, 2000.

Unit	Chapter	Section	Page.No
II	31	31.1 - 31.15	964 - 985

3. **P. Duraipandian, Kayalal Pachaiappa,** *Vector Analysis*, S.Chand & Company PVT.Ltd., First Edition 2014.

Unit	Chapter	Section	Page.No
III	2	2.1 - 2.13	20 - 51
IV	3	3.1 - 3.8	84 - 122
V	4	4.1 - 4.8	123 - 184

REFERENCE BOOKS

- 1. **M.L.Khanna**, *Trigonometry*, Jai Prakash Nath& Co., Educational Publisher, 14th Edition 1993.
- 2. M.D.Raisinghania, H.C.Saxena, H.K.Dass, *Simplified Course in Trigonometry*, S.Chand and Company Ltd., 1st Edition1999.
- 3. M.D. Raisinghania, *Vector Calculus*, S.Chand and Company Ltd., 3rd Edition, 1997.
 - Question Paper Setters Confine to the above Text Book only.

SEMESTER II

ALLIED – I : PAPER – II

MATHEMATICAL STATISTICS – II

Instructional Hrs. : 105

Max.Marks : CIA - 25; ESE - 75

Objective :

- To study about the Sampling distribution.
- The students will be able to apply statistical tools in real life problems as well as in research.
- The contents of this paper are a prerequisite for learning SPSS package.

Sampling Distribution : χ^2 Distribution – *Students t Distribution* – Snedecor's F Distribution – Sampling Distribution – Sampling Distribution of Mean and Variance in Samples from a Normal Distribution – The Central Limit Theorem.

UNIT II

UNIT I

Theory of Estimation : Introduction – Properties of Good Estimators – *Method of Moments* – Principle of Maximum Likelihood.

UNIT III

Testing Hypothesis and Tests of Significance: General Method of Testing Hypothesis – Test of Significance based on the *normal*, t, F Distribution – Small Samples – Significance of the difference between the Variance of Two Samples.

Credits : 5

Sub.Code: 16MCUA202

21 Hrs.

21 Hrs.

UNIT IV

Tests of Goodness of Fit :The Chi-Square Test of Hypothesis – Chi-Square Test of Goodness of Fit – *Application to Contingency Tables*.

UNIT V

21 Hrs.

Sampling from Finite Populations: Random Sampling – Methods of Selection of a Random Sample – Estimates of the Mean and Variance of the Mean in Simple Random Sampling – Stratified Random Sampling – *Optimum Allocation* – Systematic Samples.

Note : Italics denotes Self Study Topics.

TEXT BOOK:

1. S.Venkataraman, P.R.Vittal., Mathematical Statistics, 1973.

Unit	Chapter	Sections	Page No
Ι	6	6.4, 6.5, 6.6, 6.7, 6.9	258-281, 283-285
II	7	7.1 - 7.4	291-312
III	9	9.1 - 9.4	328-357
IV	10	10.1, 10.2	358-378
V	12	12.1 - 12.6	406-432

• Question Paper setters are asked to confine to the **above text book only**.

SEMESTER - VI

PRACTICAL – MATHEMATICAL SOFTWARE

(MATLAB, SPSS & LATEX)

Instructional Hrs: 4

Subject Code: 16MCUCP05

Max.Marks: CIA- 40; ESE-60

MATLAB:

- 1. Write a program to find the following for the matrices
 - (i) Sum (ii) Product (iii) Determinant (iv) Sum of the diagonal (v) 2nd row of the transpose.
- 2. Write a program to
 - (i) Find the Eigen values, Eigen vectors & Inverse for a given matrix.
 - (ii) Check whether the given matrix is orthogonal.
- Write a program to find the solution of a given system of equations by LU Decomposition method.
- 4. Write a program to solve the given system of equations by using Gaussian Elimination method.
- 5. Write a program to find the value of
 (i) Sin(x) and Sinh(x) (ii) Cos(x) and Cosh(x) (iii) tan(x) and tanh(x) for x = 0, π/2, π
- 6. Write a program to find the zero of the function $x^2 sinx$ at $x = \frac{\pi}{4}$
- 7. Write a program to evaluate the following (i) Single Integral (ii) Double Integral with finite limits.
- 8. Write a program to solve Lagrangian polynomial for the given data.

X: 3 7 9 10 Y: 168 120 72 63

 Write a program to check whether the given function is (i) Continuous (ii) Differentiable (iii) Analytic.

Credits :3

SPSS:

- 10. Write a program to find the following for the numerical data(i) Mean (ii) Median (iii) Harmonic Mean (iv) Geometric Mean (v) Variance and Standard Deviation.
- 11. Write a program to find the probability function by using(i) Binomial Distribution (ii) Poisson Distribution (iii) Normal Distribution.
- 12. Write a program to create a database, present the data through charts and diagrams and summarize the data using frequencies.
- 13. Write a program to apply T- test for an analysis of (i) One sample (ii) Independent samples (iii) Paired samples.
- 14. Write a program to analysis means of different variables by using one way ANOVA table.
- 15. Write a program to fit a (i) Straight line (ii) Exponential.

LATEX:

- 16. Type a Document in different ways(Left, Right, Center ,Justify) .
- 17. Type your own Bio-Data.
- 18. Draw a Table Structure.
- Type a given Mathematical expression using Differentiation, Integration & Trigonometry.
- 20. Type a given Article.