PG DEPARTMENT OF MATHEMATICS
 VISION

To be a centre of excellence for creation and dissemination of knowledge in the field of Mathematics for the nation and beyond.

MISSION

- To provide quality education and research through effective teaching and learning process
- To develop innovative, competent, ingenious and disciplinedWomen Mathematician
- To impart basic knowledge of Pure and Applied Mathematics to cater the needs of the student community
- To imbibe logical and analytical skills to the students

M.Sc., MATHEMATICS

PROGRAMME EDUCATIONAL OBJECTIVES

- To train the students in spades in the methods of Analysis and Algebra withcomputational skills to solve problems
- To promote mathematical skills and knowledge for their intrinsic beauty,effectiveness in developing proficiency in analytical reasoning, and utility inmodeling and solving real world problems
- To develop oral and written communication skills that allow students to present logical information effectively
- To expose specific skills in independently comprehending, analyzing, modeling, and solving given problems at a high level of abstraction based on logical and structured reasoning
- To prepare students for life - long learning and successful career using their Mathematical skills and abilities

PROGRAMME OUTCOMES

The programme aids the graduates to

PO1 Innovate and design complex Mathematical problems and solutions using pure and applied Mathematics

PO2 Equip the students to think in critical and logical manner
PO3 Analyze the contemporary issues in the field of Mathematics and applied sciences PO4 Opportunity of employment in schools and colleges as Mathematical Teachers and Professors, Analysts in Software Industries, Research and Development Organizations PO5 Crack lectureship and fellowship exams approved by CSIR - NET and SET

Vellalar College for Women (Autonomous), Erode - 12.								
Master of Science in Mathematics								
Course Content and Scheme of Examinations(CBCS \& OBE Pattern)								
2018-19 and onwards								
Semester I								
Study Components	Subject Code	Title of the Paper	Inst. Hrs./ Week	Exam. Dur. Hrs.	Max. Marks			Credits
					CIA	ESE	Total	
Core	18MSPC101	Linear Algebra	5	3	25	75	100	3
	18MSPC102	Real Analysis	6	3	25	75	100	4
	18MSPC103	Ordinary Differential Equations	6	3	25	75	100	4
	18MSPC104	Number Theory	5	3	20	55	75	3
	18MSPC105	Mathematical Programming	5	3	20	55	75	3
Non- Major Elective	18MSPN101	Numerical Aptitude and Reasoning	3	3	25	75	100	5
Total							550	22
Semester II								
Study Components	Subject Code	Title of the Paper	Inst. Hrs./ Week	Exam. Dur. Hrs.	Max. Marks			Credits
					CIA	ESE	Total	
Core	18MSPC206	Algebra	6	3	25	75	100	4
	18MSPC207	Complex Analysis	6	3	25	75	100	4
	18MSPC208	Partial Differential Equations	6	3	25	75	100	4
	18MSPC209	Mathematical Statistics	6	3	25	75	100	4
	18MSPCP01	Practical Programming in PYTHON	3	3	-	50	50	2
Skill Based Subject I	18MSPS201	Advanced MultiSkill Development Paper	3	1	40	60	100	5
Total							550	23

Vellalar College for Women (Autonomous), Erode - 12.								
Master of Science in Mathematics								
Course Content and Scheme of Examinations (CBCS \& OBE Pattern)								
2018-2019 and onwards								
Semester III								
Study Components	Subject Code	Title of the Paper	Inst. Hrs./ Week	Exam. Dur. Hrs.	Max. Marks			Credits
					CIA	ESE	Total	
Core	18MSPC310	Measure Theory and Integration	6	3	25	75	100	4
	18MSPC311	Topology	6	3	25	75	100	4
	18MSPC312	Fuzzy Sets and Fuzzy Logic	6	3	25	75	100	4
	18MSPC313	Numerical Analysis	6	3	25	75	100	4
Skill Based Subject II	18MSPSP02	Programming in LaTeX	3	3	40	60	100	5
Skill Based Subject III	18MSPS303	Problem Solving in Algebra and Real Analysis	3	3	25	75	100	5
Total							600	26
Semester IV								
Study Components	Subject Code	Title of the Paper	Inst. Hrs./ Week	Exam. Dur. Hrs.	Max. Marks			Credits
					CIA	ESE	Total	
Core	18MSPC414	Functional Analysis	6	3	25	75	100	4
	18MSPC415	Mathematical Methods	6	3	25	75	100	4
	18MSPC416	Mechanics	6	3	25	75	100	4
	18MSPC417	Graph Theory	6	3	25	75	100	4
		Viva - Voce	6	-	-	20	100	3
	18MSPC4PV	Project Report				80		
Total							500	19

SKIL-BASED SUBJECTS					
Paper-I	18MSPS201	Advanced Multi-Skill Development Paper	5 Credits		
Paper-II	18 MSPSP02	Programming in LaTeX	5 Credits		
Paper-III	18 MSPS303	Problem Solving in Algebra and Real Analysis	5 Credits		
NON-MAJOR PAPER					
Paper-I	18MSPN101	Numerical Aptitude and Reasoning(CafeteriaSystem)	5 Credits		
SELF-LEARNING PAPER (Optional)					

Bloom's Taxonomy Based Assessment Pattern

Components of CIA Marks

Tests (I \& II)	Assignment / Seminar / Subject Viva	Model Examination	Total
10	5	10	25
8	4	8	20

CIA-Tests (I \& II)

Bloom's Category	Section	Choice	Marks	Total
K2	A	Compulsory	$2 \times 2=4$	30
K3, K4	B	Either / Or	$2 \times 5=10$	
K4,K5	C	Either / Or	$2 \times 8=16$	

Model and End Semester Examination

Bloom's Category	Section	Choice	Marks	Total
K2	A	Compulsory	$5 \times 2=10$	
K3, K4	B	Either / Or	$5 \times 5=25$	
K4,K5	C	Either / Or	$5 \times 8=40$	

Model and End Semester Examination

Bloom's Category	Section	Choice	Marks	Total
K2	A	Compulsory	$5 \times 2=10$	55
K3, K4	B	Either / Or	$5 \times 3=15$	
K4,K5	C	Either / Or	$5 \times 6=30$	

PRACTICAL

Duration: 3.00 Hrs. Max Marks -50
End - Semester Practical Examinations (90\% of the Maximum Marks) : 45 Marks
Record Notebook (10% of the Maximum Marks) : 05 Marks

NON MAJOR ELECTIVE Max Marks -75			
Section A	$(25 \times 1=25$ marks)		
Choose the correct answer - 25 (five from each unit)	(Q.No $1-25)$		
Section B	$(10 \times 5=50$ marks)		
Answer Ten out of Fifteen Questions (three from each unit)	(Q.No $26-40)$		

SKILL BASED SUBJECT I

Marks: 100

The distribution of marks is as follows:
CIA : 40 Marks (Group Discussion - 10, Interview Techniques - 10, Written - 20)
ESE : 60 Marks(Online Examination)

SKILL BASED SUBJECT II

Marks: 100

The distribution of marks is as follows:
CIA : 40 Marks
ESE : 60 Marks (Practical - 54, Record - 6)

SKILL BASED SUBJECT III

Marks: 100
The distribution of marks is as follows:

CIA-Tests (I \& II)

Section	Choice	Marks	Total
A	Compulsory(Choose the correct answer)	$10 \times 1=10$	30
B	Either / Or	$2 \times 5=10$	
C	Open Choice (1 out of 2)	$1 \times 10=10$	

Model and End Semester Examinations

Section	Choice	Marks	Total
A	Compulsory (Choose the correct answer)	$20 \times 1=20$	75
B	Either / Or	$5 \times 5=25$	
C	Open Choice(3 out of 5)	$3 \times 10=30$	

SELF LEARNING PAPER

Five Questions out of Eight

SEMESTER III

CODE	COURSE TITLE
18MSPC310	MEASURE THEORY AND INTEGRATION

Category	CIA	ESE	L	T	P	Credit
Core	25	75	86	4	-	4

Preamble

- To acquire knowledge in the concept of measurable sets, measurable functions and the integration of such functions on the real line
- To identify integrable functions and evaluate Lebesgue integrals
- To generalize the concept of integration using measures

Prerequisite

- Knowledge in Riemann-Stieltjes integral, uniform convergence, continuity and integration

Course Outcomes

On the successful completion of the course, students will be able to

$\begin{array}{c\|} \hline \text { CO } \\ \text { Number } \end{array}$	CO Statement				Knowledge Level
CO1	Acquire the knowledge of Lebesgue measure in measurable sets and non-measurable sets				K2
CO2	Discuss the concept of Lebesgue integral of a bounded measurable function and measurable nonnegative function				K2
CO3	Apply differentiation and integration in monotone functions				K3
CO4	Analyze integration of measurable functions over general measure spaces				K4
CO5	Evaluate the construction of product Measures and Lebesgue measure on Euclidean space				K5
Mapping with Programme Outcomes					
COs/POs	Os PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	S
CO2	S	S	S	S	M
CO3	M	S	S	S	S
CO4	S	M	S	S	S
CO5	S	S	S	M	S

S - Strong; M - Medium; L - Low

Syllabus

UNIT I

18Hrs.
Lebesgue Measure: Introduction - Lebesgue Outer Measure - The σ - Algebra of Lebesgue
Measurable Sets - Outer and Inner Approximation of Lebesgue Measurable Sets - Countable Additivity, Continuity and the Borel-Cantelli Lemma - Nonmeasurable Sets.

UNIT II

18Hrs.
Lebesgue Integration: The Riemann Integral - The Lebesgue Integral of a Bounded Measurable Function over a Set of Finite Measure - The Lebesgue Integral of a Measurable Nonnegative Function - The General Lebesgue Integral - Countable Additivity and Continuity of Integration.

UNIT III

18Hrs.
Differentiation and Integration: Continuity of Monotone Functions - Differentiability of Monotone Functions: Lebesgue's Theorem - Functions of Bounded Variations: Jordan's Theorem - Absolutely Continuous Functions - Integrating Derivatives: Differentiating Indefinite Integrals.

UNIT IV
19Hrs.
Integration over General Measure Spaces: Measurable Functions - Integration of Nonnegative Measurable Functions - Integration of General Measurable Functions - The Radon-Nikodym Theorem.

UNIT V

17Hrs.
The Construction of Particular Measures: Product Measures: The Theorems of Fubini and Tonelli - Lebesgue Measure on Euclidean Space R^{n}.

Note: Italics denotes Self Study Topics.

Text Book

SI.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	H.L. Royden, P.M. Fitzpatrick	Real Analysis	PHI Learning Private Limited, Delhi	$2014,4^{\text {th }}$ Edition

Units	Chapter	Sections
I	2	$2.1-2.6$
II	4	$4.1-4.5$
III	6	$6.1-6.5$
IV	18	$18.1-18.4$
V	20	$20.1-20.2$

Reference Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Bartle R.G	Elements of Real Analysis	John Wiley and Sons, New York	$1976,2^{\text {nd }}$ Edition
2.	Rudin W.	Real and complex Analysis	McGraw- Hill, New York	$1986,3^{\text {rd }}$ Edition
3.	Tom M. Apostal	Mathematical Analysis	Narosa Publishing House, New Delhi	$2002,2^{\text {nd }}$ Edition

Web Resources

1. https://youtu.be/ot253Lhx2_o
2. https://youtu.be/Q2UmASJJSwg
3. https://epdf.tips/lebesgue-integration-on-euclidean-space.html
4. https://nptel.ac.in/courses/111101005/
5. https://nptel.ac.in/courses/111101100/
6. https://faculty.etsu.edu/gardnerr/notes

Pedagogy

Lecture, PPT, Group Discussion, Seminar and Viva-Voce

- Question Paper Setters confine to the above text book only.

SEMESTER III

CODE	COURSE TITLE
18MSPC311	TOPOLOGY

Category	CIA	ESE	L	T	P	Credit
Core	25	75	86	4	-	4

Preamble

- The aim of the course is to introduce the theory of metric spaces and topological spaces with emphasis on connected and compact subspaces that all important to higher mathematics

Prerequisite

- Knowledge in open, closed sets, limit points and continuous functions

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
$\mathbf{C O 1}$	Learn open basis and open sub basis, weak topologies, the function algebras $C(X, R)$ and $C(X, C)$	K 2
$\mathbf{C O 2}$	Use continuous functions and homeomorphisms to understand structure of topological spaces	K 2
$\mathbf{C O 3}$	Understand countability and separation axioms in Urysohn metrization and Tietz's extension theorem	K 3
$\mathbf{C O 4}$	Discuss Tychonoff's theorem, locally compact spaces, compactness of metric spaces and Ascoli's theorem	K 4
$\mathbf{C O 5}$	Analysing a function is metric, verify a given family is a topology andcheck a given set is open, closed, dense, compact, connected.	K 5

Mapping with Programme Outcomes

COs/POs	PO1	PO2	PO3	PO4	PO5
$\mathbf{C O 1}$	S	S	M	M	S
$\mathbf{C O 2}$	S	S	M	S	M
$\mathbf{C O 3}$	S	S	M	M	S
$\mathbf{C O 4}$	S	S	S	M	S
$\mathbf{C 0 5}$	S	M	M	S	M

S - Strong; M - Medium; L - Low

Syllabus

UNIT I

18 Hrs.
Topological Spaces and Continuous Functions:Topological Spaces-Basics for a Topology

- The Order Topology -The product Topology on $X \times Y$ - The Subspace Topology -Closed Sets and Limit Points - Continuous Functions - The Product Topology.

UNIT II

18 Hrs
Connectedness and Compactness: Connected Spaces -Connected Subspaces of the Real Line -Components and Local Connectedness - Compact Spaces - Compact Subspaces of the Real Line.

UNIT III

18 Hrs.
Countability and Separation Axioms: The Countability Axioms - The Separation Axioms The Urysohn Lemma -The Urysohn Metrization Theorem- The Tietz Extension Theorem.

UNIT IV

17 Hrs.
Tychonoff Theorem: The Tychonoff Theorem - Completely regular Spaces - The StoneCech Compactification.

UNIT V

19 Hrs.
Complete Metric Spaces and Functions Spaces: Complete Metric Spaces - Compactness in Metric Spaces - Pointwise and Compact Convergences - The Compact Open Topology Ascoil's Theorem - Baire Spaces and Dimension Theory: Baire Spaces - A Nowhere Differentiable Function.

Note: Italics denotes Self Study Topics.

Text Book

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Munkres R.	Topology	Prentice Hall, New Delhi	$2008,2^{\text {nd }}$ Edition

Units	Chapter	Sections
I	2	$12-19$
II	3	$23-27$
III	4	$30-35$
IV	5	37,38
V	7	$43,45-47$
	8	48,49

Reference Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	James R.Munkres	Topology	Pearson New International, United States	$2015,2^{\text {nd }}$ Edition
2.	George F.Simmons	Introduction to Topology and Modern Analysis	McGraw-Hill Book Company, United States	$9^{\text {th }}$ Reprint 2004
3.	John L.Kelley	General Topology	Dover Publications, Mineola, New York, United States	$2017,1^{\text {st }}$ Edition
4.	L.Steen and J.Seebach	Counter examples in Topology	Holt,Rinehart and Winston, New York	$1978,2^{\text {nd }}$ Edition

Web Resources

1. https://nptel.ac.in/courses/111106054/Chapter1.pdf
2. https://www.emathzone.com/tutorials/general-topology/connectedness-andcompactness/
3. http://homepage.divms.uiowa.edu/~jsimon/COURSES/M132Fall07/CountabilityPro perties_v3.pdf
4. http://www.math.toronto.edu/~herzig/Tychonoff-lecture.pdf
5. https://www.emathzone.com/tutorials/general-topology/completely-regularspace.html
6. http://mathonline.wikidot.com/the-arzela-ascoli-theorem

Pedagogy

Lecture, PPT, Group Discussion, Seminar and Viva-Voce

- Question Paper Setters confine to the above text book only.

SEMESTER III

CODE	COURSE TITLE
18MSPC312	FUZZY SETS AND FUZZY LOGIC

Category	CIA	ESE	L	T	P	Credit
Core	25	75	86	4	-	4

Preamble

- Fuzzy logic attempts to emulate reasoning and decision making
- To identify and solve the real life problems systematically and mathematically

Prerequisite

- Knowledge in set theory

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement				Knowledge Level
CO1C the s	Calculate support, height, normal alpha cuts and strong alpha cuts from the Membership Functions and manipulate standard fuzzy operations such as Complement-norm and $\mathrm{t}-$ conforms				K2
CO2 C	Compute fuzzy relations for equivalence and compatibility				K2
CO3 A	Analyse the concepts of fuzzy controllers, neural networks and Fuzzy Automata				K3
CO4 ${ }^{\text {C }}$	Construct the membership value for fuzzy sets in direct and indirect methods				K4
CO5 ${ }^{\text {A }}$	Apply the applications of fuzzy theory in engineering ,biology, medicine, economics and many other disciplines				K5
Mapping with Programme Outcomes					
COs/POs	s PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	M	S
CO2	S	S	M	S	M
CO3	S	S	M	M	S
CO4	S	M	S	S	M
CO5	S	M	M	S	M

Syllabus

UNIT I

18 Hrs.

From Classical (Crisp) Sets to Fuzzy Sets: Introduction -Crispsets: An Overview. Fuzzy
Sets: Basic Types - Fuzzy Sets: Basic Concepts - Characteristics and Significance of the Paradigm Shift - Fuzzy Sets Versus Crispsets: Additional Properties of α - Cuts Representations of Fuzzy Sets. Extension Principle for Fuzzy Sets.Operations on Fuzzy Sets: Types of Operations - Fuzzy Complements - Fuzzy Intersections: t - Norms - Fuzzy Unions: t-Conorms - Combinations of Operations - Aggregation Operations

UNIT II

18 Hrs.

Fuzzy Arithmetic:Fuzzy Numbers - Linguistic Variables - Arithmetic Operations on Intervals, Fuzzy Numbers - Lattice of Fuzzy Numbers. Fuzzy Equations.Fuzzy Relation: Crisp Versus Fuzzy Relations - Projections and Cylindric Extensions - Binary Fuzzy Relations - Binary Relations on a Single Set - Fuzzy Equivalence Relations - Fuzzy Compatibility Relations - Fuzzy Ordering Relations - Fuzzy Morphisms - Sup-i Compositions at Fuzzy Relations - Inf- ω_{i} Compositions of Fuzzy Relations.

UNIT III 18 Hrs.

Constructing Fuzzy Sets And Operations On Fuzzy Sets: General Discussion - Methods of Construction: An Overview - Direct Methods with one Expert - Direct Methods with Multiple Experts - Indirect Methods with one Expert - Indirect Methods with Multiple Experts - Constructions from Sample Data.

UNIT IV
18 Hrs.

Fuzzy Systems: General Discussion - Fuzzy Controllers: An Overview - Fuzzy Controllers: an Example - Fuzzy Systems and Neural Networks -Fuzzy Neural Networks- Fuzzy Automata - Fuzzy Dynamic Systems

UNIT V
18 Hrs.

Miscellaneous Applications: Introduction - Medicine - Economics - Fuzzy Systems and Genetic Algorithms - Fuzzy Regression - Interpersonal Communication - Other Applications

Text Book

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	George Klir J. and Bo Yuan	Fuzzy Sets and Fuzzy Logic: Theory and Applications	Prentice Hall of India Private Limited, New Delhi	2008, $1^{\text {st Edition }}$

Units	Chapter	Sections
I	1	$1.1-1.5$
	2	$2.1-2.3$
	3	$3.1-3.6$
	II	4
$4.1-4.6$		
	5	$5.1-5.10$
III	10	$10.1-10.7$
IV	12	$12.1-12.7$
V	17	$17.1-17.7$

Reference Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	George J. Klir, Tina A.Folger	Fuzzy sets, uncertainty and information	Prentice Hall of India Ltd, New Delhi	$2006,1^{\text {st }}$ edition
2.	Zimmermann H.J.	Fuzzy set Theory and its Applications	Springer Private Limited, New Delhi	$2006,4^{\text {th }}$ edition
3.	Zimmermann H.J	Fuzzy sets, Decision Making, and Expert Systems	Kluwer, Boston	$1993,4^{\text {th }}$ edition

Web Resources

1. https://www.journals.elsevier.com/fuzzy-sets-and-systems
2. https://www.ifi.uzh.ch/fuzzylogicscrip
3. http://www.tutorialspoint.com/fuzzy_logic/fuzzy_logic_control_systemhttps://www.cs e.iitb.ac.in/~cs621-2011/lectures_2009/cs621-lect38-fuzzy-logic
4. https://www.sciencedirect.com/science/article/pii/S1474667017568949

Pedagogy
 Lecture, PPT, Quiz, Group Discussion, Seminar and Case Study

- Question Paper Setters confine to the above text book only.

SEMESTER III

CODE	COURSE TITLE
18MSPC313	NUMERICAL ANALYSIS

Category	CIA	ESE	L	T	P	Credit
Core	25	75	86	4	-	4

Preamble

- To acquire the knowledge in the concept of Advanced Numerical Methods
- To identify solutions of Elliptic, Parabolic and Hyperbolic Partial Differential Equations

Prerequisite

- Knowledge in differentiation and integration

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement				Knowledge Level
CO1	Acquire the knowledge numerical differentiation and integration				K2
CO2	Apply the concept of solution of system of equation and method of iteration.				K2 \& K4
CO3	Analyze the boundary value problems and characteristic value problems				K3\& K4
CO4	Demonstrate Euler and RungeKutta method and examine the Adams Moulton method.				K4
CO5	Evaluate the concepts Poisson equation, Laplace's equation, explicit method and wave equation by finite differences.				K5
Mapping with Programme Outcomes					
COs/POs) PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	M	S
CO2	S	S	M	S	M
CO3	S	S	M	M	S
CO4	S	S	S	M	S
C05	S	M	M	S	M

S - Strong; M - Medium; L - Low

Syllabus

UNIT I
18 Hrs.
Solution of Nonlinear Equations:Newton's Method -Convergence of Newton's Method Error Bairstow's Method for Quadratic Factors. Numerical Differentiation and Integration:

Derivatives from Difference Tables - Higher Order Derivatives - Divided Difference, Central-Difference Formulas - The Trapezoidal Rule - Romberg Integration - Simpson's 1/3 Rule.

UNIT II
18 Hrs.
Solution of System of Equations: The Gauss Elimination Method and Gauss Jordan Method

- LU Decomposition Method - Matrix Inversion by Gauss-Jordan Method - Methods of Iteration: Jacobi and Gauss Seidal Iteration-Relaxation Method.

UNIT III
18 Hrs.
Solution of Ordinary Differential Equations: Taylor Series Method-Euler and Modified Euler Methods -Second Order Runge Kutta Method- Fourth Order Runge Kutta MethodMilne's Method-Adams Moulton Method- stability considerations.

UNIT IV
17 Hrs.
Boundary Value Problems and Characteristic Value Problems: Solution through a Set of Equations-Derivative Boundary Conditions- Characteristic Value Problems-Eigen Values of a Matrix by Iteration - The Power Method.

UNIT V
19 Hrs.
Numerical Solution of Partial Differential Equations: Solutions of Elliptic, Parabolic and Hyperbolic Partial Differential Equations: Laplace's Equation on a Rectangular RegionIterative Methods for Laplace Equation- The Poisson Equation-Derivative Boundary Conditions- Solving the Equation for Time - Dependent Heat Flow: The Explicit Method The Crank Nicolson Method-Solving the Wave Equation by Finite Differences.

Note: Italics denotes Self Study Topics.

Text Book

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Gerald C.F	Applied Numerical	Addison Wesley,	Reprint 2003, $6^{\text {th }}$
	Wheatley P.O	Analysis	United States	Edition

Units	Chapter	Sections
I	I	$1.4,1.5,1.8$
	V	$5.2,5.3,5.6,5.7$
II	II	$2.3-2.5,2.7,2.10,2.11$
III	VI	$6.2-6.4,6.6,6.7$
IV	VII	$7.3-7.5$
V	VIII	$8.1-8.3$

Reference Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Bluden R.L., Douglas Fairs J	Numerical Analysis	P.W.S. Kent publishing company, Boston	$1989,4^{\text {th }}$ Edition
2.	Kandasamy P., Thilagavathy K., Gunavathi K	Numerical Methods	S.Chand and company limited, New Delhi	2003, $2^{\text {nd }}$ Revised Edition
3.	Sastry S.S	Introductory Methods to Numerical Analysis	Prentice Hall of India, New Delhi	$1983,1^{\text {st }}$ Reprint Edition

Web Resources

1. http://www.s-cool.co.uk/a-level/maths/numerical-analysis
2. https://math.uconn.edu/research/research areas/numerical-analysis
3. https://onlinecourses.nptel.ac.in/noc17_ma14/course
4. http://nm.mathforcollege.com
5. http://mathforum.org/advanced/numerical.html
6. https://www.youtube.com/watch?v=eHNUe0KtUN

Pedagogy

Lecture, PPT, Group Discussion, Seminar and Viva-Voce

- Question Paper Setters confine to the above text book only.

SEMESTER III

CODE	COURSE TITLE
18MSPSP02	Programming in LaTex - Practical

Category	CIA	ESE	L	T	P	Credit
Skill Based Subject II	40	60	-	-	45	5

Preamble

- To propagate importance of the open source software's. As it is a programming package, it is useful for typesetting and makes the alignment easy and neat. This paper enables the students to learn the latest techniques that is helpful to prepare a printable document in an enhanced manner

prerequisite

- Undergraduate-level mathematics and experience with basic computer operations

List of Practicals

1) Create nested list in LaTex.
2) Create a document in book format.
3) Draw a complete bipartite graph and label using LaTex draw.
4) Import pictures in LaTex.
5) Create hyperlinks in LaTex documents.
6) Create a LaTex document with the below expressions
i) Subscripts and Superscripts
ii) Brackets and Parentheses
iii) Fractions and Binomials
iv) Aligning equations
v) Operators
vi) Spacing in math mode
vii) Integrals, sums and limits
viii) List of Greek letters and math symbols
ix) Mathematical fonts
7) Draw a pie chart in LaTex.
8) Type the following in LaTex
i) $1+\frac{a b}{a+\frac{b c}{d+\frac{5 c}{3 x y}}}$
ii) $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{x+y}}}}$
9) Give colors for graphical presentation in LaTex.
10) Draw a sine curve in LaTex.
11) Draw three types of diagrams of benzene in LaTex.
12) Convert a LaTex file to PowerPoint presentation
13) Prepare your resume in LaTex.
14) Prepare PG Project in LaTex format
15) Prepare an article for Mathematical journal.

CODE	COURSE TITLE
18MSPS303	PROBLEM SOLVING IN ALGEBRA AND REAL ANALYSIS

Category	CIA	ESE	L	T	P	Credit
Skill Based Subject III	25	75	-	45	-	5

Preamble

- To impart the knowledge in problem solving techniques

prerequisite

- Knowledge in Algebra and Analysis

Syllabus

UNIT I 9 Hrs.

Analysis: Elementary set theory - Finite, Countable and Uncountable Sets - Real number system as a complete ordered field - Archimedean property -Supremum-Infimum(Problems only).

UNIT II

9 Hrs.

Analysis: Sequences and Series- Convergences - Limsup, Liminf - Continuity - Uniform Continuity - Differentiability - Mean Value Theorem - Sequences and series of functions Uniform Convergence (Problems only).

UNIT III

9 Hrs.
Linear Algebra: Vector Spaces - Subspaces - Linear Independence - Basis - Dimensions Algebra of Linear Transformations - Algebra of Matrices - Rank and Determinant of Matrices - Linear Equations - Eigen Values and Eigen Vectors - Cayley Hamilton Theorem (Problems only).

UNIT IV

9 Hrs.

Algebra: Permutations - Combinations - Fundamental Theorem of Arithmetic - Divisibility

 in Z (Problems only).UNIT V
9 Hrs.
Group Theory: Groups -Subgroups -Normal Subgroups - Quotient Groups Homomorphisms - Cyclic Groups - Permutation Groups - Cayley's Theorem - Class Equations - Sylow Theorem (Problems only).

Reference Books:

Sl.No.	Author	Book	Publisher	Year and Edition
1	Prasun Kumar Nayak	Linear Algebra Concepts and Applications	Books and Allied (P) Ltd, Kolkata	2016, $2^{\text {nd }}$ Edition
2	DipakChatterjee	Abstract Algebra	Prentice Hall of India, Delhi	2001, $1^{\text {st }}$ Edition
3	Robert G.Bartle, Donald R.Sherbert	Introduction to Real Analysis	Wiley India, New Delhi	2015, $4^{\text {th }}$ Edition
4	Vijay K Khanna, S.K. Bhambri	A Course in Abstract Algebra	Vikas Publishing House Pvt Ltd, New Delhi	2008, $3^{\text {rd }}$ Edition

Web Resources:

1. https://nptel.ac.in/courses/111106051/
2. https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/modal/v/linearsubspaces
3. https://nptel.ac.in/courses/111106053/4
4. https://www.researchgate.net/publication/237380490_problems_and_solutions_in_real _ and_complex_analysis
5. https://www.academia.edu/7141249/Abstract_Algebra_Manual_Problems_and_solutio n _ only_the_section_on_GROUPS_
6. https://www.examrace.com/CSIR/CSIR-Sample-Old-Papers/Mathematical-Sciences/

Pedagogy

PPT, Quiz, Group Discussion, Seminar

- Question Paper Setters confine to the above text book only

SEMESTER IV

CODE	COURSE TITLE
18MSPC414	FUNCTIONAL ANALYSIS

Category	CIA	ESE	L	T	P	Credit
Core	25	75	86	4	-	4

Preamble

- To understand the basic function spaces and to introduce the related branches of algebra and geometry and present an unified treatment to problems in different branches of analysis

Prerequisite

- Knowledge in Linear Algebra, Analysis, Ordinary Differential Equations

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
$\mathbf{C O 1}$	Understand the basic and simple examples in Banach spaces	K2
$\mathbf{C O 2}$	Analyze the Determinants and spectrum of an operator in finite dimensional spectral theory	K 3
$\mathbf{C O 3}$	Demonstrate the adjoint of an operator and examine the normal and unitary operators	K 4
$\mathbf{C O 4}$	Apply the concept of Hilbert Spaces	K 4
$\mathbf{C O 5}$	Evaluate the concepts of Banach algebra and solve its problems	K 5

Mapping with Programme Outcomes

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	M	M	S
CO2	S	S	M	S	M
C03	M	S	S	M	S
CO4	S	M	M	M	S
CO5	M	S	S	S	M

S - Strong; M - Medium; L - Low

Syllabus

UNIT I
18 Hrs.
Banach Spaces: The Definition and Some Examples - Continuous Linear Transformations The Hahn - Banach Theorem - The Natural Imbedding of N in $N^{* *}$ - The Open Mapping Theorem.

UNIT II

19 Hrs.
Banach Spaces and Hilbert Spaces: The Conjugate of an Operator - Hilbert Spaces - The
Definition and Some Simple Properties - Orthogonal Complements - Orthonormal Sets.

UNIT III

 18 Hrs.Hilbert Spaces: The Conjugate Space H* -The Adjoint of an Operator - Self-Adjoint Operators - Normal and Unitary Operators - Projections.

UNIT IV

17 Hrs.
Finite-Dimentional Spectral Theory: Matrices - Determinants and the Spectrum of an Operator - The Spectral Theorem.

UNIT V

18 Hrs.
Banach Algebra: The Definition and Some Examples of Banach Algebras - Regular and Singular Elements - Topological Divisors of Zero - The Spectrum - The Formula for the Spectral Radius.

Note: Italics denotes Self Study Topics

Text Book

SI.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Simmons G.F.	Introduction to Topology and Modern Analysis	McGraw- Hill Book Company, London	$2018,29^{\text {th }}$ Reprint

Units	Chapter	Sections
I	9	$46-50$
II	9	$51-54$
	10	$52-54$
IV	10	$55-59$
V	11	$60-63$

Reference Books

S.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Goffman C. and Pedrick.G.A	First course in Functional Analysis	Prentice Hall of India, New Delhi	$1987,2^{\text {nd }}$ Edition
2.	Bachman G and Narici L	Functional Analysis	Academic Press, New York	$1996,2^{\text {nd }}$ Edition
3.	Lustenik L.A and Sobolev V.J	Elements of Functional Analysis	Hindustan Publishing Corporation, New Delhi	$1985,3^{\text {rd }}$ Edition
4	Taylor A.E., David C.Lay	Introduction to Functional Analysis	Rajhans Publication, New York	$1980,2^{\text {nd }}$ Edition

Web Resources

1. https://www.khanacademy.org/math/old-ap-calculus-ab/ab-derivatives-analyze-functions
2. https://users.math.msu.edu/users/jeffrey/920/920notes.pdf
3. https://www.khanacademy.org/math/old-differential-calculus/analyzing-func-with-calcdc
4. https://ocw.mit.edu/courses/mathematics/18-102-introduction-to-functional-analysis-spring-2009/lecture-notes/

Pedagogy

Lecture, PPT, Quiz, Group Discussion, Seminar

- Question Paper Setters Confine to the above text book only

SEMESTER IV

CODE	COURSE TITLE
18MSPC415	MATHEMATICAL METHODS

Category	CIA	ESE	L	T	P	Credit
Core	25	75	87	3	-	4

Preamble

- To develop the application of integral transforms in the analysis of some boundary value and initial value problems in Applied Mathematics

Prerequisite

- Knowledge in Transforms and Differential Equations

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
$\mathbf{C O 1}$	Understand the concepts of Fourier Transforms and its applications	K2
$\mathbf{C O 2}$	Discuss the properties of Hankel transforms and Dirichlet Problems	K2
$\mathbf{C O 3}$	Analyze the types of integral equations	K 3
$\mathbf{C O 4}$	Apply the concepts of initial Value and boundary Value problems	K 4
$\mathbf{C O 5}$	Demonstrate the method of variations with fixed Boundaries	K5

Mapping with Programme Outcomes

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	L	S
CO2	M	S	S	S	M
CO3	S	M	M	S	S
CO4	M	S	S	M	S
CO5	S	S	M	S	S

S - Strong; M - Medium; L - Low

Syllabus

UNIT I
18 Hrs.
Fourier Transforms: Fourier Sine and Cosine Transforms -Fourier Transform of Derivatives-Fourier Transform of Simple Functions - Convolution Integral - Parseval's Theorem - Solution of PDE by Fourier Transform - Laplace Equation in Half Plane- In Infinite Strips - In Semi Infinite Strip - The Linear Diffusion Equation on a Semi Infinite Line - The Two Dimensional Diffusion Equation.

UNIT II

18 Hrs.
Hankel Transforms: Properties of Hankel Transform -Hankel Inversion Theorem of Derivatives of Functions- The Parseval's Relation - Relation between Fourier and Hankel Transforms - Axisymmetric Dirichlet Problem for a Half Space - Axisymmetric Dirichlet Problem for a Thick Plate.

UNIT III

18 Hrs.
Integral Equations with SeparableKernels: Type of Integral Equations - Integral Fredholm Alternative-Examples - Approximate Method - Method of Successive Approximations: Examples- Volterra Integral Equations -Examples.

UNIT IV
17 Hrs.
Application of Ordinary Differential Equation:Initial Value Problems - Boundary Value Problems - Singular Integral Equations - Abel Integral Equation - Examples.

UNIT V

19 Hrs.
The Method of Variations in Problems with Fixed Boundaries: Calculus of Variations Variation and its Properties - Euler's Equation - Functionals of the Integral Form Functional Dependent on Higher Order Derivatives - Functional Dependent on the Functions of Several Independent Variables - Variational Problems in Parametric Form - Applications.
Note: Italics denotes Self Study Topics.

Text Book

S.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Sneddon I.N	The use of Integral Transforms Units(I \& II)	McGraw-Hill Book Company, New York	$1979,1^{\text {st }}$ Edition
2.	Ram.P.Kanwal	Linear Integral Equation Theory and Technique Units(III \& IV)	Academic Press. Inc(London).Ltd, New York	$1971,1^{\text {st }}$ Edition
3.	Elsgolts L.	Differential Equations and Calculus of Variations (UnitV)	Mir Publishers, Moscow	$1973,2^{\text {nd }}$ Edition

Units	Chapter	Sections
I	2	$2.4-2.7,2.9-2.10,2.16 .1-$ (a),(b),(c),2.16.2-(a),(b)
	5	$5.2-5.4,5.6-5.7,5.10 .1,5.10 .2$
III	2	$2.3-2.5$
	IV	3
$3.2-3.4$		
	5	$5.1-5.2$
V	8	$8.1-8.2$

Reference Books

S.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Mikhlin S.G.	Integral Equations	Pergamon Press, oxford, London	$1957,1^{\text {st }}$ Edition
2.	Zemanian A.H.,	Generalized Integral Transformation	Johnwiley\& sons, Int., New York	$1969,1^{\text {st }}$ Edition
3.	Sneddon I.N.	Fourier Transforms	McGraw-Hill, New York	$1951,1^{\text {st }}$ Edition

Web Resources

1. http://nptel.ac.in/courses/111107098/1
2. http://nptel.ac.in/courses/111107098/3
3. http://www.sciencedirect.com/book/9780080095547
4. https://www.researchgate.net/publication/

235643374_Handbook_of_Integral_Equations
5. https://www.khanacademy.org/math/differential-equations/laplace-transform/convolution-integral

Pedagogy

Lecture, PPT, Quiz, Group Discussion, Seminar

- Question Paper Setters Confine to the above text book only

SEMESTER IV

CODE	COURSE TITLE
18MSPC416	MECHANICS

Category	CIA	ESE	L	T	P	Credit
CORE	25	75	86	4	-	4

Preamble

- To develop the ability to determine Lagrangian \& Hamiltonian functions of mechanical systems and to obtain the corresponding equations of motions

prerequisite

- Knowledge in constraints, transformations and characteristic functions

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
$\mathbf{C O 1}$	Understand the concepts of D'Alembert's principle and Lagrange's equations	K 2
$\mathbf{C O 2}$	Discuss the concepts of Lagrange's equations from Hamilton's principle and properties	K 2
$\mathbf{C O 3}$	Analyze the canonical equations of Hamilton and conservation theorems	K 3
$\mathbf{C O 4}$	Demonstrate the concept of Poisson brackets and other canonical invariants	K 4
$\mathbf{C O 5}$	Evaluate the concepts of Hamilton-Jacobi equation	K 5

Mapping with Programme Outcomes

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	M	S
CO2	S	S	M	S	M
CO3	S	S	M	M	S
CO4	S	S	S	M	S
CO5	S	M	M	S	M

S - Strong; M - Medium; L - Low

Syllabus

UNIT I

18 Hrs.
Survey of Elementary Principles: Constraints - Generalized Coordinates, Holonomic and Non - Holonomic Systems, Scleronomic and Rheonomic Systems. D’Alembert's Principle and Lagrange's Equations - Velocity - Dependent Potentials and the Dissipation Function Some Applications of the Lagrange Formulation.

Unit II

18 Hrs.
Variation Principles and Lagrange's Equations: Hamilton's Principle - Some Techniques of Calculus of Variations - Derivation of Lagrange's Equations from Hamilton's Principle Extension of Hamilton's Principle to Non Holonomic Systems - Conservation Theorems and Symmetry Properties.

Unit III
 18Hrs.

Hamilton Equations of Motion: Legendre Transformations and the Hamilton Equations of Motion - Canonical Equations of Hamilton - Cyclic Coordinates and Conservation Theorems - Routh's Procedure - Derivation of Hamilton's Equations from a Variational Principle The Principle of Least Action.

Unit IV

18 Hrs.
Canonical Transformations: The Equations of Canonical Transformation - Examples of Canonical Transformations - Poisson Brackets and Other Canonical Invariants - Integral Invariants of Poincare- Lagrange Brackets.

Unit V

18 Hrs.
Hamilton-Jacobi Theory: Hamilton-Jacobi Equations for Hamilton's Principal Function Harmonic Oscillator Problem - Hamilton-Jacobi Equation for Hamilton's Characteristic Function - Separation of Variables in the Hamilton-Jacobi Equation.

Note: Italics denotes Self Study Topics.

Text Book

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Goldstein H	Classical Mechanics	Narosa Publishing house, New Delhi	Reprint 2018, $2^{\text {nd }}$ Edition

Units	Chapter	Sections
I	1	$1.3-1.6$
II	2	$2.1-2.4,2.6$
III	8	$8.1-8.3,8.5,8.6$
IV	9	$9.1,9.2,9.4,9.5$
V	10	$10.1-10.4$

Reference Books				
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Gantmacher F.	Analytic Mechanics	MIR Publishers, Moscow	$1975,2^{\text {nd }}$ Edition
2.	Gelfand I.M., Fomin S.V	Calculus of Variations	Dover Publications, United States	$2000,1^{\text {st }}$ Edition
3.	Loney S.L	An Elementary Treatise on Statics	Kalyani Publishers, New Delhi	Reprint 2012

Web Resources

1. http://nptel.ac.in/courses/108107098/37
2. http://nptel.ac.in/courses/112108201/19
3. http://nptel.ac.in/courses/112108201/36
4. https://www.khanacademy.org/science/ap-physics-1/simple-harmonic-motion-ap/v/equation-for-simple-harmonic-oscillators

Pedagogy

Lecture, PPT, Quiz, Group Discussion, Seminar

- Question Paper Setters confine to the above text book only.

SEMESTER IV

CODE	COURSE TITLE
18MSPS417	GRAPH THEORY

Category	CIA	ESE	L	T	P	Credit
Core	25	75	87	3	-	4

Preamble

- To introduce the concept of Graphs, connectivity, colorings, planner graphs and its applications in computing, social and natural sciences

Prerequisite

- Basic knowledge in mappings and set theory

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the concepts of graphs and sub graphs	K2
CO2	Discuss the Euler tours and Hamilton cycles of the graph	K3
CO3	Discuss about matching and edge coloring of the graph	K3
CO4	Analyze the ideas of independent sets and vertex coloring	K4
CO5	Evaluate the concepts of planner graphs and directed graphs	K5

Mapping with Programme Outcomes

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	M	S
CO2	S	M	S	M	S
CO3	S	S	M	S	S
CO4	S	S	S	S	M
CO5	S	S	S	S	M

[^0]
Syllabus

UNIT I

Graphs, Subgraphs: Graphs and Simple Graphs - Graph isomorphism - The Incidence and Adjacency Matrices - Subgraphs - Vertex degrees - Paths and Connection - Cycles. Trees: Trees - Cut Edges and Bonds - Cut Vertices - Cayley's Formula.

UNIT II 18 Hrs.

Connectivity: Connectivity, Blocks. Euler tours and Hamilton Cycles: Euler Tours Hamilton Cycles.

UNIT III 18 Hrs.

Matchings: Matchings -Matchings Coverings in Bipartite Graphs - PerfectMatchings Edge Colourings: Edge Chromatic Number-Vizing's Theorem.

UNIT IV 18 Hrs.
Independent Sets, Cliques: Independent Sets -Ramsey's Theorem. Vertex Colorings: Chromatic Number -Brook's Theorem -Hajos Conjecture -Chromatic Polynomials - Girth and Chromatic Number.

UNIT V

18 Hrs.

Planar Graphs: Plane and Planar Graphs - Dual Graphs - Euler's Formula - Bridges Kuratowski's Theorem (proof omitted) - The Five ColorTheorem and the Four color Conjecture - NonHamiltonian Planar Graphs - Directed Graphs: Directed Graphs Directed Paths - Directed Cycles.

Note: Italics denotes Self Study Topics

Text Book

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Bondy J.A., Murty U.S.R	Graph Theory with applications	American Elsevier, Publishing Co., Inc., New York,	1976, $5^{\text {th }}$ Edition

Units	Chapter	Sections
I	1	1.1-1.6
	2	2.1-2.4
II	3	3.1-3.2
	4	4.1-4.2
III	5	5.1-5.3
	6	6.1-6.2
IV	7	7.1-7.2
	8	8.1-8.5
V	9	9.1-9.7
	10	10.1-10.3

Reference Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Harary F.	Graph Theory	Addison-Wesley Publishing Company, United States	$1969,1^{\text {st }}$ Edition
2.	Murugan M.	Graph Theory and Algorithms	Muthali Publishing House, Anna Nagar, Chennai	$2003,1^{\text {st }}$ Edition.
3.	Narshingh Deo	Graph Theory with Applications to Engineering and Computer Science	Prentice-Hall and India Private Limited, Delhi	$2003,1^{\text {st }}$ Edition.

Web Resources:

1. https://nptel.ac.in/courses/106108054/
2. https://nptel.ac.in/courses/106108054/16
3. https://www.khanacademy.org/computing/computer-science/algorithms/graph-representation/a/describing-
graphs?utm=1701771789\&content=330437864380\&keyword=\&device=m\&gclid=Cj wKCAiAqt7jBRAcEiwAof2uKygjnvwDEEG0ceeGx5LJ4TGGA19OUIVazre58Uiwz PzGYQRSvj_8FBoCt68QAvD_BwE
4. http://www.freebookcentre.net/maths-books-download/Graph-Theory-Lecture-

Notes-by-NPTEL.html
5. http://www.freebookcentre.net/maths-books-download/Graph-Theory-and-

Applications.html

Pedagogy

Lecture, PPT, Quiz, Group Discussion, Seminar

- Question Paper Setters confine to the above text book only

Self Learning Paper

CODE	COURSE TITLE
118MSPSL01	DESCRIPTIVE STATISTICS

Category	CIA	ESE	L	T	P	Credit
Self Learning Paper	-	100	-	-	-	5

Preamble

- To impart the knowledge in Probability and Regression Analysis

prerequisite

- Basic Knowledge in Statistics

Syllabus

UNIT I

Origin: Scope - Functions - Limitations - Collection of Datas- Classification and Tabulation of Data.

UNIT II

Measures of Dispersion: Range - Quartile Deviation -Mean Deviation- Standard Deviation -Cofficient of Variation-Lorenz Curve -Simple Problems only.

UNIT III

Theory of Probability: Statistical Probability- Axiomatic Approach to ProbabilityProbability Functions - Law of Additional Probabilities - Multiplication Law of Probability and Conditional Probability - Baye's Theorem-Simple Problems.

UNIT IV

Skewness : Introduction - Measures of Skewness- Absolute Measures - Relative Measures Karl Pearson's Coefficient - Bowley's Coefficient - Kelley's Coefficient - Kurtosis Measures of Kurtosis.

UNIT V

Correlation Analysis: Introduction - Types of Correlation - Methods of Studying Correlation-Propertiesof Correlation Coefficient-Rank Correlation.

Regression Analysis: Introduction - Uses of Regression Analysis - Regression lines Regression Equations.

Text Book

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Gupta S.P.	Statistical Methods	Sultan Chand, NewDelhi	2007, 5 th Edition

Units	Chapter
I	$1,3,5$
II	8
III	$1(\mathrm{Vol} \mathrm{II})$
IV	9
V	10

REFERENCE BOOKS

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	Kulshresth P.K.	Probability and Mathematical Statistics	S. Chand \& Co., Delhi	1961, $1^{\text {st }}$ Edition
2.	Ray M., Harswarupsharma	Mathematical Statistics	Ram Prasad and Sons, Agra	1971, $5^{\text {th }}$ Edition
3.	Vittal P.R.	Mathematical Statistics	Margham Publications, Chennai	2012, 1 st Reprint

Web Resources:

1. https://nptel.ac.in/courses/105103140/2
2. https://www.khanacademy.org/math/statistics-probability/probability-library
3.https://www.fd.cvut.cz/department/k611/PEDAGOG/THO_A/A_soubory/statistics_firstfiv e.pdf
3. https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/mean-median-basics/v/mean-median-and-mode?modal=1
4. https://nptel.ac.in/courses/105103140/2

- Question Paper Setters confine to the above text book only

[^0]: S - Strong; M - Medium; L - Low

