COURSE TITLE

CLASSICAL ALGEBRA

Category	CIA	ESE	L	Т	Р	Credit
CORE	25	75	56	4	-	4

Preamble

- To acquire complete knowledge of summation and approximation through Binomial, Exponential and Logarithmic series
- ✤ To understand concepts and improve problem solving skills on theory of equations
- To gain knowledge in theory of numbers

Prerequisite

• Knowledge in basic concepts of series, equations and types of equations

Course Outcomes

CO	CO Statement	Knowledge
Number	CO Statement	Level
CO1.	find the sum of finite and infinite Binomial, Exponential and	K1
	Logarithmic series	K1
CO2.	solve equations using various techniques	K2
CO3.	find the approximate roots of an equation by Newton's method and	К3
0.03.	Horner's method	K)
CO4.	gain knowledge in number theory	K2
CO5.	study the concept of congruences and its properties	K2

On the successful completion of the course, students will be able to

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1.	М	S	L	М	М
CO2.	М	S	М	S	S
CO3.	S	S	М	S	S
CO4.	М	S	М	М	S
CO5.	S	S	L	М	S

Mapping with Programme Outcomes

SEMESTER – I

Core - I: CLASSICAL ALGEBRA

Syllabus

UNIT I

Binomial, Exponential and Logarithmic Series: Theorems – Statements without proofs – Emphasize on their Immediate Application to Summation and Approximation.

UNIT II

Theory of Equations: Roots of an Equation – Relations Connecting the Roots and Coefficients -Symmetric Function of Roots - Transformations of Equations - Reciprocal Equations - Character and Position of Roots – Descarte's Rule of Signs.

UNIT III

Theory of Equations: Rolle's Theorem – Multiple Roots – Newton's Method of Approximation for Finding Positive Roots upto Two Decimal Places - Horner's Method upto Two Decimal Places.

UNIT IV

Theory of Numbers: Prime and Composite Numbers – the Sieve of Eratosthenes – Divisors of a Given Number N – Euler's Function $\phi(N)$ - Integral Part of a Real Number – the Highest Power of a Prime p Contained in n! - the Product of r Consecutive Integers is Divisible by r! - Congruences.

UNIT V

Theory of Numbers: Properties of Congruences – Numbers in Arithmetical Progression – Theorem – Fermat's Theorem – Generalization of Fermat's Theorem – Wilson's Theorem – Lagrange's Theorem.

Note: Italics denotes Self Study Topics

Text Bo	oks			
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	T. Natarajan, T.K. Manicavachagom Pillay & K.S.Ganapathy	Algebra –Vol. I (Units I, II & III) and Vol. II (Units IV & V)	S.Viswanathan Printers and Publishers Pvt., Ltd.,	Vol. I, 2014-2015 Vol. II, 2012-2013

(12 hrs.)

(12hrs.)

(12 hrs.)

(12 hrs.)

(12 hrs.)

Unit	Chapter	Sections
Ι	3	5 – 10, 14
	4	1 – 3, 5 – 9.1, 11(without limit)
II	6	1 – 12, 14 – 19, 21, 24
III	6	25, 26, 30
IV	5	1 - 12
V	5	13 - 18

Reference Books					
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition	
1	R.M. Khan	Algebra - Classical, Modern, Linear & Boolean	New central Book Agency(P) Ltd.,	Reprint 2016	
2	H.S. Hall & S.R.Knight	Higher Algebra	AITBS Publishers, India	Reprint 2014	
3	Erwin Kreyszig	Advanced Engineering Mathematics	Wiley & Sons	2012, 9 th Edition	

Pedagogy

- Lecture, PPT, Quiz, Assignment, Group Discussion, Seminar, Subject Viva
- Question paper setters are asked to confine to the above **text books** only.

CODE	COURSE TITLE
18MSUC102/	CALCULUS
18MCUC102	CALCULUS

Category	CIA	ESE	L	Т	Р	Credit
CORE	25	75	70	5		4

Preamble

- To focus on conceptual understanding
- To explore fundamental concepts of differential and integral calculus
- To explore the solutions of problems from a mathematical perspective, and
- To prepare students to succeed in upper level math, science, engineering and other courses which require calculus

Prerequisites

- Students must know the different types of functions and deriving new functions from given functions
- Students must know the integration of all basic types of functions

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1.	understand the meaning of differentiation using limits	K1, K2
CO2.	construct n th derivatives of different functions	К3
CO3.	compute radius and centre of curvature	K2
CO4.	evaluate integration of trigonometric functions	K2
CO5.	apply calculus concepts to solve real-world problems such as finding areas and volumes	K3

Mapping with Programme Outcomes

	PO1	PO2	PO3	PO4	PO5
CO1.	М	S	М	М	М
CO2.	М	М	S	S	S
СОЗ.	S	М	М	М	S
CO4.	М	S	М	S	S
CO5.	S	S	М	S	S

SEMESTER – I Core – II : CALCULUS

Syllabus

UNIT I

Differentiation – Definition – Standard Forms – Logarithmic Differentiation – Differentiation of Implicit Functions – *Differentiation of one Function with respect to Another* – Successive Differentiation – Leibnitz Formula for nth Derivative of a Product (Statements and Problems only)

UNIT II

Envelopes – Radius of Curvature in Cartesian and *Polar Forms* – Centre of Curvature – Evolutes and Involutes – Pedal Equations

UNIT III

Integration of the types $dx/(ax^2+bx+c)$, $lx+m/(ax^2+bx+c)$, $1/\sqrt{ax^2+bx+c}$, $(px+q)/\sqrt{ax^2+bx+c}$, $\frac{1}{a\cos x+b}$, $\frac{1}{a\sin x+b}$ and $\frac{1}{(a^2\cos^2 x+b^2\sin^2 x)}$ – Integration by parts – Reduction formulae – Problems – *Bernoulli's formula* – Problems

UNIT IV

Multiple Integrals : Evaluation of Double and Triple Integrals Problems only – Applications to Calculation of Areas and *Volumes* – Jacobians – Change of Variables in Double and Triple Integrals

UNIT V

Improper Integrals: Infinite Integrals – Simple Problems – Beta and Gamma Integrals – Their Properties – Relation between them – *Evaluation of Multiple Integrals using Beta and Gamma Functions*

Note: Italics denote Self Study Topics

,• ,•

(15 hrs.)

(15 hrs.)

(15 hrs.)

(15 hrs.)

Text B	Text Books					
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition		
1.	S. Narayanan and T.K.Manicavachagom Pillay	Calculus, Vol. I (Units I, II)	S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai	2015		
2.	S. Narayanan and T.K.Manicavachagom Pillay	Calculus, Vol. II (Units III, IV, V)	S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai	2015		

UNIT I UNIT II	Chapter II & Chap Chapter X	oter III
UNIT III	Chapter I	Sec 7.3 Rule (b) Type (i) & (ii)
		Sec 8 Case (i) & (ii)
		Sections 9, 12, 13, 15
UNIT IV	Chapter 1V	2.2, 4, 5.3, 5.4, 6.3
	Chapter VI	1.1, 1.2, 2.1 – 2.4
UNIT V	Chapter VII	

Refere	Reference Books							
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition				
1.	Tom M.Apostol	Calculus Vol.1 and Vol.2	John Wiley & Sons	2016, 2 nd Edition				
2	James Stewart	Calculus: Early Transcendentals	Thomson Brooks/Cole, USA	2008, 6 th Edition				

Pedagogy

• Lecture, PPT, Subject Viva, Seminar and Videos

• Question paper setters are asked to confine to the above **text books** only.

CODE 18MSUA101

COURSE TITLE STATISTICS FOR MATHEMATICS – I

Category	CIA	ESE	L	Т	Р	Credit
ALLIED	20	55	70	5	-	4

Preamble

To acquire knowledge in the fundamentals of statistics such as random variables, distribution of the discrete and continuous types, bivariate distributions and functions of random variables

Prerequisite

Must know the concepts in probability theory such as properties of probability, independent events, conditional probability and Baye's theorem

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1.	learn the concept of random variables	K1
CO2.	exercise the problem solving ability in statistics	K3
СО3.	study the characteristics of discrete and continuous distributions	K2
CO4.	acquire knowledge in of bivariate distributions	K2
CO5.	make use of random variables to find the distributions of functions of random variables	K3

Mapping with Programme Outcomes

Mapping with Hogrannic Outcomes						
COs	PO1	PO2	PO3	PO4	PO5	
CO1.	М	S	М	S	М	
CO2.	S	S	М	S	М	
CO3.	М	S	М	S	М	
CO4.	М	S	S	S	S	
CO5.	М	S	М	S	S	

SEMESTER – I Allied – I: STATISTICS FOR MATHEMATICS – I

UNIT I	(15 hrs.)
Discrete Distributions : Random Variables of the Discrete Type – Mathematical E	xpectation
- Special Mathematical Expectation - Binomial Distribution - Negative	Binomial
Distribution - The Poisson Distribution	
UNIT II	(15 hrs.)
Continuous Distributions : Random Variables of Continuous Type – Exponential,	Gamma

and χ^2 Distributions – Normal Distribution

UNIT III

Syllabus

Bivariate Distributions: Bivariate Distributions of the Discrete type – Correlation Coefficient - Conditional Distributions – Bivariate Distributions of the Continuous Type – *The Bivariate Normal Distributions*

(15 hrs.)

(15 hrs.)

(15 hrs.)

UNIT IV

Distributions of Functions of Random Variables: Functions of One Random Variable – Transformations of Two Random Variables – *Several Random Variable* – The Moment Generating Function Technique

UNIT V

Distributions of Functions of Normal Random Variables: Random Functions Associated With Normal Distributions – The Central Limit Theorem – Approximation for Discrete Distributions - Chebyshev's Inequality – Convergence in Probability

Italics denote self-study topics

Text Bo	ook			
Sl.No.	Author Name	Title of the Boo	k Publisher	Year and Edition
1	Robert V. Hogg, Elliot A. Tanis, Dale L.Zimmerman	Probability and Statistical Inference	Pearson Education Inc.	2015, 9 th Edition.
Referen	ice Books			
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	Presanna Sahoo	Probability and Mathematical Statistics	University of Louisville, USA	2013
2	Barbara Illowsky, Susan Dean	Introductory Statistics	Rice University, Texas	2014 , Last Edition
3	Robert V. Hogg, Joseph W. McKean, Allen T. Craig	Introduction to Mathematical Statistics	Pearson	2018, 8 th Edition.
4	S.C. Gupta and V.K. Kapoor	Fundamentals of Mathematical Statistics	Sultan Chand & Sons	2014

Pedagogy

• Lecture, PPT, Seminar, Subject Viva, Videos

TEXT BOOK

Unit	Chapter	Sections	Page No.
I	2	2.1 to 2.6	41-72, 79-85
II	3	3.1 to 3.3	87-113
III	4	4.1 to 4.5	125-153
IV	5	5.1 to 5.4	163-179, 187-191
V	5	5.5 to 5.8	192-216

• Question Paper setters are asked to confine to the above **text book only**

CODE	COURSE TITLE
18MSUAP01	MATHEMATICAL SOFTWARE - I

Category	CIA	ESE	L	Т	Р	Credit
ALLIED	-	25	-		30	1

Preamble

To apply the statistical knowledge acquired through the theory course

Prerequisite

To be familiar with the basic statistical concepts of measures of central tendency, measures of dispersion, descriptive statistics, correlation, regression & testing of hypothesis.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1.	be equipped with the professional competency through learning Free Open Source Software - R	K3
CO2.	create the database, visualizing and analyzing the data using R	K2
CO3.	make inferences through the results obtained	K4

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1.	S	S	М	S	S
CO2.	S	S	М	S	S
CO3.	S	S	М	S	S

List of practicals

- 1. Use R as a calculator using basic Commands in R
- 2. Data entry, manipulation and retrieval
- 3. Creating frequency and relative frequency distribution in R
- 4. Creating data frame, matrices
- 5. Descriptive statistics, Graphics pie diagram, box plot, histogram, bar plot
- 6. Creating functions
- 7. To find mean, median, geometric mean, harmonic mean of numerical data and edit the output
- 8. To determine standard deviation, variance and checking the consistency of the given data and edit the output
- 9. Bivariate data- scatter plot, correlation co-efficient, fitting linear regression line and interpreting the result
- 10. Multiple linear regression models
- 11. Computation of probabilities in various distributions.(Binomial, Poisson, Normal)
- 12. Drawing the graph of probability mass and density functions
- 13. One and two sample't' test and paired' test
- 14. One way and two way Analysis of Variance tests

Kututuk	C DOORS			
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1.	W. John Braun and Duncan J. Murdoch	A First Course in Statistical Programming with R	Cambridge University Press, Newyork	2007
2.	J H Maindonald	Using R for Data Analysis and Graphics: Introduction, Code and Commentary	https://cran.r- project.org/doc/contri b/usingR.pdf	2008
3.	Kim Seefeld and Ernst Linder	Statistics Using R with Biological Examples	https://cran.r- project.org/doc/contri b/Seefeld_StatsRBio.p df	online

CODE	COURSE TITLE
18MSUC203/	DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS
18MCUC203	DIFFERENTIAL EQUATIONS AND LAI LACE TRANSFORMS

Category	CIA	ESE	L	Т	Р	Credit
CORE	25	75	56	4	-	4

Preamble

- To promote conceptual knowledge and problem solving skills of ordinary differential equations and partial differential equations
- ✤ To understand the evaluation of different functions through Laplace Transformation

Prerequisite

Must know the basic formulae of differentiation and problem solving techniques

Course Outcomes

On the successful completion of the course, students will be abl	e to
--	------

CO Number	CO Statement	Knowledge Level
CO1.	solve the first order differential equations through various techniques	K1 & K2
CO2.	learn the methods of solving second order ODE for different functions of <i>x</i>	K2
СО3.	evaluate the partial differential equations of first order using different methods	K2
CO4.	apply Laplace transformation to solve differential equations	К3
CO5.	make use of inverse Laplace transforms to solve the ordinary differential equations and system of differential	K3

Mapping with Programme Outcomes

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1.	М	М	L	S	S
CO2.	М	S	М	S	S
CO3.	М	S	М	S	S
CO4.	S	М	L	М	S
CO5.	S	М	М	М	S

Core – III: DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS Syllabus

UNIT I

First order ODEs: First Order Higher Degree Equations- Solvable for x, y, p - *Clairaut's form* – Simultaneous Differential Equations of the Form (i) $f_1(D)x + f_2(D)y = h_1(t)$, $g_1(D)x + g_2(D)y = h_2(t)$ where f_1 , f_2 , g_1 and g_2 Are Rational Functions of D = d/dt with Constant Coefficients, h_1 and h_2 are Explicit Functions of t (ii) dx / P = dy / Q = dz / R – Conditions of Integrability

UNIT II

Second order ODEs: Particular Integral of Equations of Second Order with Constant Co-efficients for xe^{mx} - Higher Order Equations when F(D) is easily Factorizable – Linear equations with Variable Co-efficients (Reducible to Quadratic form)

UNIT III

Partial Differential Equations: Formation of Equations by Eliminating Arbitrary Constants and Arbitrary Functions – Definition of General, Particular and Complete Solutions – Singular and General Solutions of First Order Equations in the Standard Forms (i) f(p,q) = 0, (ii) f(z,p,q) = 0, (iii) f(x,p) =g(y,q), (iv) z = px + qy + f(p,q) – Lagrange's Method of Solving Linear Differential Equations Pp + Qq = R

UNIT IV

Laplace transforms: Definition – Laplace Transforms of e^{at} , cosat, sinat and t^{n} where *n* is an Integer - First Shifting Theorem – Laplace Transforms of e^{at} cosbt, e^{at} sinbt and e^{at} t^{n} - Theorems of $L\{f'(t)\}, L\{f''(t)\}, L\{f^{n}(t)\}$.

UNIT V

Inverse Laplace Transforms: Definition – Solution of Differential Equations with Constant Coefficients using Laplace Transformation – Solving System of Linear Differential Equations using Laplace Transformation

(12 hrs.)

(12 hrs.)

(12 hrs.)

(12 hrs.)

(12 hrs.)

Note: Italics denote Self Study Topics

Text Book						
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition		
1	S. Narayanan & T.K.Manicavachagom Pillay	Calculus Vol. III	S. Viswanathan Printers and Publishers Pvt. Ltd., Chennai	Reprint 2015		

Unit	Chapter	Sections
Ι	1	5-7.3
	3	1 –6
II	2	1-4, 8, 9
III	4	1 - 6
IV	5	1 - 5
V	5	6 - 9

Reference Books

KUUUU	Activities books							
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition				
1	M.D.Raisinghania	Ordinary and Partial Differential Equations	S.Chand & Sons	2016, 18 th Edition				
2	Erwin Kreyszig	Advanced Engineering Mathematics	Wiley & Sons	2012, 9 th Edition				
3	B.S.Grewal	Higher Engineering Mathematics	Khanna Publishers	2014, 43 rd Edition				

Pedagogy

- Lecture, PPT, Quiz, Assignment, Group Discussion, Seminar, Subject Viva
- Question paper setters are asked to confine to the above **text book** only.

CODECOURSE TITLE18MSUC204TRIGONOMETRY, VECTOR CALCULUS AND FOURIER SERIES

Category	CIA	ESE	L	Т	Р	Credit
CORE	20	55	42	3		3

Preamble

- To focus on conceptual understanding
- To introduce logarithm of a complex quantity
- To prepare students to succeed in upper level math, science, engineering and other courses which require trigonometry and vector calculus
- To impart the application of sine and cosine functions in signals using Fourier series

Prerequisite

• Students must know the basics of trigonometric identities, complex number system and the difference between scalars and vectors

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1.	expand sines and cosines of multiples of theta and powers of theta	K2
CO2.	find logarithm of a complex number and summation of trigonometric series	K 1
CO3.	understand the relation between directional derivative, gradient, divergence and curl	K 1
CO4.	make use of theorems to study relation between line, surface and volume integrals	К3
CO5.	evaluate line, surface and volume integrals	K3

Mapping with Programme Outcomes

	PO1	PO2	PO3	PO4	PO5
CO1.	М	S	L	М	S
CO2.	М	М	М	М	S
CO3.	М	М	L	S	S
CO4.	S	S	М	S	S
CO5.	S	S	М	S	S

SEMESTER – II

Core – IV: TRIGONOMETRY, VECTOR CALCULUS AND FOURIER SERIES Syllabus UNIT I (9 hrs.) **Expansions:** Expansion of $\cos n\phi$, $\sin n\phi$, $\cos^n \phi$, $\sin^n \phi$ – Hyperbolic functions – Separation of real imaginary and parts

 $\sin(\alpha + i\beta)$, $\cos(\alpha + i\beta)$, $\tan(\alpha + i\beta)$, $\sinh(\alpha + i\beta)$, $\cosh(\alpha + i\beta)$, $\tanh(\alpha + i\beta)$, $\tan^{-1}(\alpha + i\beta)$

UNIT II

UNIT III

Logarithm of a Complex Number and Summation of Series: Logarithm of a Complex Number -Summation of Trigonometric Series – Method of Differences – When Angles are in A.P.

Scalar and Vector Point Functions- Directional Derivative, Gradient, Divergence, Curl -Summation notation for Divergence and Curl - Laplacian Differential Operator - Problems

UNIT IV

Integration of Vectors : Line, Surface and Volume Integrals - Theorems of Gauss, Green, Stokes (Statements only) - Verification

UNIT V Fourier Series : Definition - Finding Fourier Coefficients for a Given Periodic Function with Period 2π – Odd and Even Functions – *Half Range Series*

Note: Italics denote Self Study Topics

(9 hrs.)

(9 hrs.)

(9 hrs.)

(9 hrs.)

of

CODE 18MSUA202

COURSE TITLE

STATISTICS FOR MATHEMATICS – II

Category	CIA	ESE	L	Т	Р	Credit
ALLIED	25	75	98	7	-	5

Preamble

To learn the theory of estimation and testing of statistical hypothesis

Prerequisite

• Must have the basic knowledge about the characteristics of statistical measures

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1.	learn the theory of estimation	K1
CO2.	acquire knowledge about confidence intervals	K2
CO3.	formulate the statistical hypothesis	К3
CO4.	enhance the statistical knowledge by applying the techniques learned in testing of statistical hypothesis	K2
CO5.	analyze and draw inferences based on the results of the testing of hypothesis	K4

Mapping with Programme Outcomes

Hupping with Hogi unime Outcomes							
COs	PO1	PO2	PO3	PO4	PO5		
CO1.	М	S	М	S	М		
CO2.	М	S	М	S	М		
CO3.	S	S	S	S	S		
CO4.	М	S	М	S	S		
CO5.	S	S	М	S	S		

SEMESTER – II Allied – I: STATISTICS FOR MATHEMATICS – II

Syllabus
UNIT I (21 hrs.)
Point Estimation : Maximum likelihood estimation – A simple regression problem – Sufficient Statistics –. <i>Descriptive Statistics</i>
UNIT II (21 hrs.)
Interval Estimation : Confidence Intervals for Means – Confidence Intervals for the Difference of Two Means – <i>Confidence Intervals of Proportions</i> – Sample Size.
UNIT III (21 hrs.)
Test of Statistical Hypothesis : Tests About One Mean – Tests of the Equality of Two Means – <i>Tests About Proportions</i> – Power of a Statistical Test – Best Critical Regions.
UNIT IV (21 hrs.)
Some more Parametric Tests : Chi-Square Goodness of Fit – Contingency Tables – Tests Concerning Regression – <i>Correlation</i> .
UNIT V (21 hrs.)
Analysis of Variance : One – Factor Analysis of Variance – Two Way Analysis of

• *Italics* denotes self-study topics

Variance.

Text Boo	Text Book								
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition					
1.	Robert V. Hogg, Elliot A. Tanis, Dale L. Zimmerman	Probability and Statistical Inference	Pearson Education Inc.	2015, 9 th Edition.					

Reference Books						
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition		
1.	Presanna Sahoo	Probability and Mathematical Statistics	University of Louisville, USA	2013		
2.	Barbara Illowsky, Susan Dean	Introductory Statistics	Rice University, Texas	2014 , Last Edition		
3.	Robert V. Hogg, Joseph W. McKean, Allen T. Crag	Introduction to Mathematical Statistics	Pearson	2018, 8 th Edition.		
4.	S.C. Gupta and V.K. Kapoor	Fundamentals of Mathematical Statistics	Sultan Chand & Sons	2014		

Pedagogy

• Lecture, PPT, Seminar, Subject viva, Videos

TEXT BOOK:

Unit	Chapter	Sections	Page No
Ι	6	6.1, 6.4, 6.5, 6.7	256-266
II	7	7.1 to 7.4	301-315,324-331
III	8	8.1 to 8.3, 8.5, 8.6	355-371, 392-406
IV	9	9.1, 9.2, 9.6	415-435, 462-467
V	9	9.3 to 9.4	435-455

• Question paper setters are asked to confine to the above **text book only.**

CODE	COURSE TITLE
18MSUCP01	MATHEMATICAL SOFTWARE – II

Category	CIA	ESE	L	Т	Р	Credit
CORE		25			15	1

Preamble

- To give hands-on experience in the Free Open Source Software SageMath which will be highly useful for future teachers and researchers
- To visualize the mathematical concepts for better understanding

Prerequisites

• Students must know the basic concepts of number theory, calculus, theory of equations and differential equations

Course Outcomes

On	On the successful completion of the course, students will be able to				
	CO Statement Knowledge Level				
CO1.	use Geogebra to draw geometrical shapes	K2			

COI.	use Geogeora to draw geometrical shapes	KZ
CO2.	use SageMath as a calculator	K3
CO3.	solve number theory problems	K3
CO4.	make use of theoretical concepts to solve problems and visualize the output	К3

Mapping with Programme Outcomes

	PO1	PO2	PO3	PO4	PO5
CO1.	S	S	S	S	S
CO2.	S	S	S	S	S
CO3.	S	S	S	S	S
CO4.	S	S	S	S	S

SEMESTER - II

Core Practical : MATHEMATICAL SOFTWARE - II

List of Practical – SAGEMATH

- 1. Use SageMath as a calculator A Financial Example
- 2. Use Sage for Trigonometry
- 3. Use Sage to Graph 2-Dimensionally
- 4. Superimposing Multiple Graphs in One Plot
- 5. Solve a Linear System of Equations

 $\begin{array}{l} 3481x + 59y + z = 0.87 \\ 6241x + 79y + z = 0.61 \\ 9801x + 99y + z = 0.42 \end{array}$

- 6. Making Own Functions and Plotting in Sage
- 7. Solving Linear and Non-Linear Systems of Equations
- 8. Use Sage as a Numerical Solver
- Use Sage to find Derivatives & Plot f(x) and f'(x) Together and find Higher-Order Derivatives
- 10. Use Sage to Calculate Integrals
- 11. Labeling the Axes of Graphs
- 12. Graphing an Integral
- 13. Parametric 2D Plotting
- 14. Vector Field Plots, Gradients and Vector Field Plots
- 15. Working with the Integers and Number Theory
- 16. Combinations and Permutations

Text Book					
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition	
1	Gregory V. Bard	Sage for Undergraduates	online version		

1.	р.б
2.	p.7 – 8
3.	p.8 – 11
4.	p.14
5.	p.24
6.	p.30
7.	p.39 – 40
8.	p.43
9.	p.49 – 50
10.	p.51 – 58
11.	p.91 – 94
12.	p.95 – 97
13.	p.112 – 114
14.	p.114 – 115
15.	p.145 – 147
16.	p.153