SEMESTER – I

CODE	COURSE TITLE
18PHPC101	CLASSICAL MECHANICS

Category	CIA	ESE	L	Т	Р	Credit
Core	25	75	71	4	-	4

Preamble

The aim of this subject is to acquire in-depth knowledge in classical mechanics by introducing conservation laws for studying the dynamics of particle systems. It also helps to provide practice in using mathematical techniques pertaining to the development of Lagrangian and Hamiltonian formulations.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement				ledge Level	
CO1	Understand the New involving the dynam systems	Understand the Newton's laws of motion to solve problems involving the dynamic motion of classical mechanical K2 systems				
CO2	Analyze the kinema and to explore the d	Analyze the kinematics of Elastic and Inelastic scattering and to explore the dynamics of rigid body K4				
CO3	Realize the elementa profound knowledge Hamiltonian	Realize the elementary concepts of mechanics, and attain profound knowledge in the principles of Lagrangian and K2 Hamiltonian				
CO4	Evaluate the different types of generating functions by means of Canonical transformation K5					
CO5	Build the mechanics different systems		K3			
Mapping w	ith Programme Outc	omes				
COs	PO1	PO2	PO3	PO4	PO5	
CO1	S	М	М	S	S	
CO2	S	М	М	М	S	
CO3	L	М	S	S	S	
CO4	S	S	М	S	М	

S-Strong; M-Medium; L-Low

S

CO5

Μ

Μ

S

S

Syllabus

Unit – I

Mechanics of Single and Systems of Particles:

Newton's laws of motion - Mechanics of a particle - Equation of motion of a particle - Motion of a particle under constant force and alternating force - Mechanics of systems of particles - Angular momentum of the system - Potential and kinetic energies of the system - Motion in a central force field - Motion of two particles equivalent to single particle - Equation of motion of centre of mass with respect to centre of force - Motion in an inverse-square law force field - Classification of orbits

Unit – II

Collisions of Particles and Motion of Rigid Body :

Elastic and inelastic scattering - Laboratory and centre of mass systems - Relations between different quantities in the laboratory and centre of mass systems - Kinematics of elastic scattering in the laboratory system - Inelastic scattering in the laboratory frame - Motion of a rigid body -Euler's theorem - Angular momentum and kinetic energy - Inertia tensor - Euler's equation of motion - Torque Free Motion - Euler's angles.

Unit – III

Lagrangian and Hamiltonian Formulations:

Hamilton's variational principle - Lagrange's equations of motion - Conservation theorems and symmetry properties - Cyclic coordinates - Application of Lagrange's equation; Linear harmonic oscillator, particle moving under a central force, Atwood's machine - Hamilton's equations of motion - Application of Hamiltonian's equations of motion; Particle moving in an electromagnetic field - Phase space - Principle of least action

Unit – IV

Canonical Transformations and Poisson Brackets :

Canonical transformations - Generating function - Properties of canonical transformations - Poisson brackets – Properties of Poisson brackets - Constant of motion using Poisson brackets - Poisson brackets of canonical variables - Poisson's Theorem - Invariance of Poisson bracket under canonical transformation - Motion as successive canonical transformation (Infinitesimal generators) - Liouville's theorem - The Hamilton–Jacobi equation - Action and angle variables

Unit – V

Small Oscillations:

Small oscillations - Stable and unstable equilibrium - Lagrange's equation of motion for small oscillations - Normal coordinates and normal frequencies - Small oscillations of particles on string - Free vibrations of linear tri atomic molecule - Two carts connected with three springs - Triple pendulum - Double pendulum

(15 Hrs.)

(15 Hrs.)

(15 Hrs.)

(15 Hrs.)

(15 Hrs.)

Text Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	R. G. Takwale and P. S. Puranik	Introduction to Classical Mechanics	Tata McGraw-Hill New Delhi	2009, 39 th Edition
2	Charles Poole and John Safko Herbert Goldstein	Classical Mechanics	Pearson Education and Dorling Kindersley, New Delhi	2011, 3 rd Edition
3	Gupta, Kumar and Sharma	Classical Mechanics	PragatiPrakashan, New Delhi	2010, 23 th Edition
4	J.C. Upadhyaya	Classical Mechanics	Himalaya Publishing House, India	2017, 2 nd Edition

Reference Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	Vimal Kumar Jain	Classical Mechanics	Ane Books PVT LTD	2009, 1 st Edition
2	R. Douglas Gregory	Classical Mechanics	Cambridge University Press	2011, 1 st Edition

Web Resources

- 1. <u>http://www.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf</u>
- 2. http://www.iitg.ac.in/physics/fac/saurabh/ph101/Lecture13.pdf
- 3. http://www.macs.hw.ac.uk/~simonm/mechanics.pdf
- 4. <u>https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-fall-2014/lecture-notes/MIT8_09F14_Chapter_4.pdf</u>
- 5. <u>https://static1.squarespace.com/static/570e7b14e707ebd28d391286/t/57e699cc2e69cf798</u> a554723/1474730449322/classical-5.pdf

Pedagogy

• Lecture, PPT, Seminar, Quiz, and Group Discussion

SEMESTER – I

CODE	COURSE TITLE
18PHPC102	MATHEMATICAL PHYSICS – I

Category	CIA	ESE	L	Т	Р	Credit
Core	25	75	71	4	-	4

Preamble

The aim of this subject is to introduce the basic mathematical topics necessary to realize and appreciate various physical laws of nature. It also provides the ability to formulate, interpret and draw inferences from mathematical solutions and to develop problem solving skills that contributes to innovation and applications of basic research.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
C01	Analyze the properties of different types of matrices and utilizing the idea of matrices and determinants to solve sets of simultaneous linear equations arising out of physical problems	K4
CO2	Apply to solve ordinary second order differential equations essential in physical problems	K3
CO3	Acquires Knowledge about different special mathematical functions	K3
CO4	Relate Laplace transform methods to solve elementary differential equations of interest in physics and engineering	K2
CO5	Expand periodic functions using Fourier series under a valid condition	K2

Mapping with Programme Outcomes

	0				
COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	L	S
CO2	М	S	S	S	S
CO3	S	М	S	М	S
CO4	М	S	М	S	М
CO5	S	М	S	S	S

G-41

Unit-I

Hrs.)

Matrices and Determinants :

Properties of matrix addition and multiplication - different type of matrices and their properties -Rank of a Matrix and some of its theorems - Solution to linear homogeneous and non homogeneous equations - Cramers rule - eigen values and eigenvectors of matrices differentiation and integration of matrix.

Unit-II

Hrs.)

Solving of differential equations : Homogeneous linear equations of second order with constant coefficients and their solutions - ordinary second order differential with variable coefficients and their solution by power series and Frobenius methods - extended power series method for indicial equations.

Unit-III

Hrs.)

Special differential equations and their solutions :

Legendre's differential equation: Legendre polynomials - Generating functions - Recurrence Formulae–Rodrigue's formula - orthogonality of Legendre's polynomial; Bessel's differential equation: Bessel's polynomial - generating functions - Recurrence Formulae - orthogonal properties of Bessel's polynomials - Hermite differential equation - Hermite polynomials generating functions - recurrence relation.

Unit-IV

Hrs.)

Laplace Transform :

Laplace transforms: Linearity property, first and second translation property of LT - Derivatives of Laplace transforms - Laplace transform of integrals - Initial and Final value theorems; Methods for finding LT:direct and series expansion method, Method of differential equation; Inverse Laplace transforms: Linearity property, first and second translation property, Convolution property - Application of LT to differential equations and boundary value problems. **Unit-V** (15

Hrs.)

Fourier series and integrals :

Fourier series definition and expansion of a function x - Drichlet's conditions - Assumptions for the validity of Fourier's series expansion and its theorems - Complex representation of Fourier series - problems related to periodic functions - graphical representation of FS - Fourier integrals - convergence of FS - some applications of Fourier transforms.

(15

(15

(15

	Text Boo	ks			
-	Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
	1	B.D.Gupta	Mathematical Physics	Vikas Publishing House Pvt ltd.	2006, 3 rd Edition
	2	Dass.H.K, Rama Verma	Mathematical Physics	S. Chand & Sons, New Delhi	2015, 7 th Edition
	3	G. Arfken	Mathematical methods for physics	Elsevier	2010, 6 th Edition
	4	Sathya Prakash	Mathematical Physics	S. Chand & Sons, New Delhi	2014, 6 th Edition

Reference Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	Rajput	Mathematical Physics	PragatiPrakasam, Meerut	2004, 17 th Edition
2	Erwin Kreyszig	Advanced Engineering mathematics	Wiley Eastern Limited Publications	1993, 7 th Edition
3	George.E Andrews Richard Askey Ranjan Ray	Special Function	Cambridge University	2010, 1 st Edition

Web Resources

- 1. http://www.pbte.edu.pk/text%20books/dae/math_113/Chapter_09.pdf
- 2. http://home.iitk.ac.in/~sghorai/TEACHING/MTH203/ode14.pdf
- 3. http://www.egyankosh.ac.in/bitstream/123456789/12543/1/Unit-3.pdf
- 4. <u>http://www.vyssotski.ch/BasicsOfInstrumentation/LaplaceTransform.pdf</u>
- 5. http://olewitthansen.dk/Mathematics/Fourier_series.pdf

Pedagogy

• Lecture, PPT, Seminar, Quiz, and Assignment

SEMESTER I

CODE	COURSE TITLE
18PHPC103	COMPUTATIONAL METHODS AND PROGRAMMING

Category	CIA	ESE	L	Т	Р	Credit
Core	25	75	71	4	-	4

Preamble

The aim of this subject is to introduce various numerical and computational techniques useful to handle complex problems and to concentrate on logically intractable problems in physics using computational tools. It also enhances the various computational techniques with programming basic in MATLAB.

Course Outcomes

On the successful completion of the course, students will be able to

CO		CO Statement					
Number		eo statement					
CO1	Understand the basic	e idea about findir	ng solutions using		K)		
	computational method	ods			κ <i>∠</i>		
	Explore the concept	Explore the concepts involved in eigen values and					
CO2	interpolation and lea	rn how to interpre	et and analyze data	a	K4		
	visually						
CO2	Employ the tools needed to formulate numerical				V2		
005	differentiation and integration				K3		
CO4	Compute the solution of differential equations and apply it				V2		
04	to real-world proble	ms			КJ		
CO5	Assess numerical al	gorithms through	MATLAB and		K5		
005	visualize the results	of the computatio	ns				
Mapping with Programme Outcomes							
COs	PO1	PO2	PO3	PO4	PO5		
CO1	М	S	S	S	S		
CO2	S	S	S	S	S		
CO3	S	М	S	S	S		
CO4	S	S	S	S	М		
CO5	S	S	S	S	S		

Syllabus

UNIT – I

Roots of equation :

Bisection method - False position method - Newton Raphson method - Basic Gauss elimination method - Gauss elimination with partial pivoting - Gauss Jacobi iteration method - Gauss Seidal iteration method - Inversion of a matrix using Gauss elimination method

UNIT – II

Curve fitting and interpolation :

Method of least squares - straight line, parabola , $y = ax^n$, $y = ae^{bx}$, $y = a+bx^n$ type curves - sum of squares of residuals for straight line and parabola fit-Forward and Backward differences - Gregory Newton forward and backward interpolation formula for equal intervals - Divided difference -

properties of divided differences - Newton's divided differences formula - Lagrange's interpolation formula for unequal intervals.

UNIT – III

Numerical integration and differences :

Newton's forward and backward differences formula to get the derivatives (First and Second order) -Divided differences table to calculate derivatives for unequal intervals Newton - cotes formula -(Trapezoidal rule, Simpson's rule, Simpson's 3/8 rule) - Error estimates in trapezoidal and Simpson's rule.

$\mathbf{UNIT} - \mathbf{IV}$

Differential Equation :

Basic Euler method - Improved Euler method - Modified Euler method - RungeKutta fourth order method - RK4 Method for first order differential equation – partial differential equation - Difference - quotients - Graphical representations of partial quotients - Classification of partial differential equation of the second order - standard and diagonal five point formula for laplace equations - solution of laplace's equation (Liebmann's iterations process).

$\mathbf{UNIT} - \mathbf{V}$

Matlab Fundamentals :

Introduction - Matlab Features - Desktop Windows: Command Hstory, Workspace, Array Editor and Current Directory - Matlab Help and Demos - Matlab Functions, characters, operators and commands. Basic arithmetic in Matlab - Basic Operations with Scalars, Vectors and Arrays - Matrices and matrix Operations - Complex Numbers - Matlab Built in Functions - Illustrative examples Control flow statements: if, else, else if, switch Statements - For, while loop structures - break Statement- Input-Output Commands - Function m files - Script m files - Controlling Output.

Programming:

Charging of a capacitor in an RC circuit with three times constant - Plotting input and output characteristics of an NPN transistor.

(15 Hrs.)

(15 Hrs.)

(15Hrs)

(15 Hrs.)

(15 Hrs.)

·

Text Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	K. Venkataraman	Numerical methods in science and engineering	National publishing company	2001, 5 th Edition
2	P. Kandasamy, K. Thilgavathy, K. Gunavathy	Numerical methods	S. Chand & Company Ltd., New Delhi.	2014, 1 st Edition
3	E. Balagurusamy	Numerical methods	Tata McGraw Hill Publishing Company Ltd	2001, 1 st Edition
4	Jain M.K, Iyengar S.R.K & Jain R.K	Numerical methods forscientificengineering computation	New Age International	2008, 5 th Edition
5	Rudhra Prathab	Getting started with MATLAB	Oxford University Press, New Delhi	2005, 7 th Edition

Reference Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	John H. Mathews	Numerical methods for mathematics science and Engineering	Prentice Hall of India Pvt. Ltd., New Delhi	1992, 2 nd Edition
2	T.Veerarajan & T. Ramachandran	Numerical methods	Tata McGraw Hill, New Delhi.	2008, 2 nd Edition
3	Brain Hunt, Ronald Lipsman, Jonathan Rosenberg	A Guide to Matlab for Beginners & Experienced Users	Cambridge University Press.	2006, 2 nd Edition

Web Resources

- 1. <u>http://www.universityofcalicut.info/SDE/BSc_maths_numerical_methods.pdf</u>
- 2. http://www.egyankosh.ac.in/bitstream/123456789/31291/1/Unit-13.pdf
- 3. <u>http://drkk.in/wp-content/uploads/2014/04/MAT211_Numerical_Methods_Formulae.pdf</u>
- 4. https://www.svce.ac.in/departments/maths/CITM/NUMERICAL%20METHODS/unit%205.pdf
- 5. <u>http://homen.vsb.cz/~lud0016/nm/matlab_guide.pdf</u>

Pedagogy

• Lecture, PPT, Seminar, Quiz and Assignment

SEMESTER I

CODE	COURSE TITLE
18PHPC104	QUANTUM MECHANICS – I

Core 25 75 71 4 - 4	Category	CIA	ESE	L	Т	Р	Credit
	Core	25	75	71	4	-	4

Preamble

The aim of this subject is to extend the knowledge of solving time-dependent and time-independent Schrödinger equation for simple potentials and helps to understand the approximation methods for many electron system. It also provides the knowledge of role of angular momentum in physical problems.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number			Knowl	edge Level		
CO1	Familiarize the conc	ept of linear vector	or space, Hermitia	n		K)
01	operator and Heisen	berg Uncertainty	Principle			K2
	Understand the role of uncertainty in quantum physics and					
CO2	establishing the com	mutation relations	ship between			K2
	components of angu	lar momentum				
	Apply Schrödinger	equation to obtain	wave functions for	or		
CO3	some basic, physical	lly important type	s of potential in or	ne		K3
	dimension and three	dimension				
CO4	Analyze the approxi	mate methods nee	eded to formulate		KЛ	
04	quantum mechanica	l problems				124
	Evaluate the solution	n of many electro	n system by			
CO5	integrating the ideas	of Central field a	pproximation, The	omas		K5
	Fermi model and Ha	artree Folk equation	on			
Mapping wi	th Programme Outc	omes				
COs	PO1	PO2	PO3	P	04	PO5
CO1	М	S	М		S	S
CO2	М	S	S		S	S
CO3	S	М	S		S	S
CO4	S	S	S		S	М
CO5	S	S	S		S	S

Syllabus

Unit -I

General formalism of quantum mechanics :

Linear Vector Space - Linear Operator - Eigen Functions and Eigen Values - Hermitian Operator - Postulates of Quantum Mechanics - Simultaneous Measurability of Observables - General Uncertainty Relation - Dirac's Notation - Equations of Motion; Schrodinger, Heisenberg and Dirac representation- momentum representation.

Unit -II

Energy Eigenvalue problems :

Particle in a box - Linear Harmonic oscillator: Schrödinger method and operator method - Tunnellingthrough a barrier - Particle moving in a spherically symmetric potential - Separation of equation - System of two interacting particles - Rigid rotator - Hydrogen atom – eigenfunction - radial probability density.

Unit -III

Angular Momentum :

Orbital Angular Momentum - Spin Angular Momentum - Total Angular Momentum Operators - Commutation Relations of Total Angular Momentum with Components - Ladder operators - Commutation Relation of J_z with J_+ and J_- - Eigenvalues of J^2 , J_z - Matrix representation of J^2 , J_z , J_+ and J_- - Addition of angular momenta - ClebschGordon Coefficients.

Unit- IV

Approximate Methods:

Time Independent Perturbation Theory in Non-Degenerate Case - Degenerate Case-Stark Effect in Hydrogen atom - Spin-orbit interaction - Variation Method - Born-Oppenheimer approximation - WKB Approximation.

Unit- V

Toyt Rooks

Many Electron Atoms:

Indistinguishable particles - Pauli principle- Inclusion of spin - spin functions for two-electrons - The Helium Atom - Central Field Approximation - Thomas-Fermi model of the Atom - Hartree Equation- Hartree -Fock equation.

I ONC DO								
Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition				
1	G.Aruldhas	Quantum Mechanics	Phi Learning Pvt. Ltd.	2013, 2 th Edition				
2	P.M. Mathews &K.Venkatesan	A Text Book of Quantum Mechanics	TataMcGraw Hill	2004, 1 st Edition				
3	David J.Griffiths	Introduction to Quantum Mechanics	Cambridge University Press	2017, 1 st Edition				

(15 Hrs.)

(15 Hrs.)

(15 Hrs.)

(15 Hrs.)

· · · ·--

(15 Hrs.)

Reference Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	L.I Schiff and Jayendran	Quantum Mechanics	McGraw Hill Education	2016, 4 th Edition
2	A. Devanathan	Quantum Mechanics	Narosa Publishing	2006, 1 st Edition
3	R.Shankar	Principles of Quantum Mechanics,	SpringerPvt Ltd	2007, 1 st Edition

Web Resources

- 1. http://alan.ece.gatech.edu/ECE6451/Lectures/ECE6451L4PostulatesOfQMAndOperatorsVer2.pdf
- 2. https://www.phas.ubc.ca/~mcmillan/rqpdfs/5_qm_in_one_dimension.pdf
- 3. http://courses.physics.ucsd.edu/2009/Fall/physics130b/Ang_Mom.pdf
- 4. https://datagrid.hu/boda/Boda-sajat/Rush/Matek/Math-ChemPhys/Ch12.pdf
- 5. http://www.teor.mi.infn.it/~molinari/NOTES/hartree.pdf

Pedagogy

• Lecture, PPT, Seminar, Quiz and Group Discussion

SEMESTER – II

CODE	COURSE TITLE
18PHPC205	MATHEMATICAL PHYSICS – II

Category	CIA	ESE	L	Т	Р	Credit
Core	25	75	86	4	-	4

Preamble

The aim of this subject is to acquire basic knowledge of some advanced topics in Mathematical Physics, such as the group theory, tensor analysis and linear vector space and to provide a deeper understanding of the mathematics underpinning different fields of theoretical physics. It also provides the ability to formulate, interpret and draw inferences from mathematical solutions.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Analyze a formal treatment of probability theory and to equip with essential tools for statistical analysis	K4
CO2	Understand the basic concepts underlying complex analysis	K2
CO3	Apply group theory and integral transforms to solve mathematical problems of interest in physics	К3
CO4	Establish the relation for linearly dependent and independent vectors	K 4
CO5	Build up a solid background of tensor analysis required to understand the properties of materials and their structures	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	S	S
CO2	S	S	S	S	S
CO3	S	М	S	S	S
CO4	S	S	S	S	М
CO5	S	S	S	S	S

Syllabus

Unit -I

Probability :

Probability-Addition rule of Probability - Multiplication Law of Probability - Probability distribution -Binomial distribution - mean Binomial distribution - Standard deviation of binomial distribution -Poisson distribution - Normal distribution - characteristics of normal distribution - Applications of normal distribution.

Unit- II

Complex variables :

Complex Algebra - Cauchy-Riemann Conditions - Cauchy's Integral Theorem - Cauchy's Integral formula - Laurent expansion – singularities – Mapping - Conformal mapping - Calculus of residues.

Unit – III

Group Theory :

Definition of Group - Subgroup, invariant group, abelian group, orthogonal and unitary groups -Homomorphism, isomorphism - Reducible and irreducible representations - Generators of Continuous groups.

Unit – IV

Linear vector spaces :

Definition and Examples - Real Linear vector space - Uniqueness of Null and Reversed vectors - Scalar Products of Vectors : Definition of Scalar Product of two vectors, Scalar product for real linear vector spaces, Cauchy - Schwartz inequality - Metric Spaces - Linear Independence of vectors and basis for a vector space - Dimension of a vector space - Orthonormal basis - Vector Subspaces - Direct sum decomposition.

Unit – V

Tensor Analysis :

Definition of Tensors - Contravariant, covariant and mixed tensors - addition and subtraction of Tensors - Summation convention - Symmetry and Anisymmetry Tensor - Contraction and direct product - Quotient rule- Pseudotensors, Levi - Civita Symbol - Dual tensors, irreducible tensors - Metric Tensors - Christoffel symbols - Geodesics.

Text Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	G. Arfken	Mathematical methods for physics	Elsevier	2010, 6 th Edition

(18 Hrs.)

(18 Hrs.)

(18 Hrs.)

(18 Hrs.)

(18 Hrs.)

2	S.D. Joglekar	Mathematical Physics	Universities Press Pvt. Ltd.	2005, 1 st Edition
3	H.K. Dass and R. Verma	Mathematical Physics	S. Chand & Company	2001, 2 nd Edition
4	Sathya Prakash	Mathematical Physics	S. Chand & Sons, New Delhi	2014, 6 th Edition

Reference Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	Erwin Kreyszig	Advanced Engineering mathematics	Wiley Eastern	1993, 7 th Edition
2	B.D. Gupta	Mathematical Physics	Vikas Publishing House Pvt.Ltd	2006, 3 rd Edition

Web Resources

- 1. http://www.iiserpune.ac.in/~ayan/MTH201/Sahoo_textbook.pdf
- 2. http://www.math.s.chiba-u.ac.jp/~yasuda/ippansug/CV-bookfi.pdf
- 3. http://www.matfys.lth.se/education/FYS256/aryasetiawan.pdf
- 4. http://nptel.ac.in/courses/122106034/quantumphysics.pdf
- 5. http://nasc.ac.in/nasc/images/StudyMaterials/Physics/MScTensors.pdf

Pedagogy

• Lecture, PPT, Seminar, Quiz and Assignment

SEMESTER II

CODE	COURSE TITLE
18PHPC206	ADVANCED ELECTRONICS

Category	CIA	ESE	L	Т	Р	Credit
Core	25	75	86	4	-	4

Preamble

The aim of this subject is to emphasis the basic working of semiconducting devices and to analyze/ design the circuits based on linear integrated circuits for particular applications. It also helps to analyze logic processes and implement logical operations using combinational and sequential logic circuits. It provides the knowledge of the architecture and the instruction set of microprocessors and the basic ideas about microcontroller.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Know about the current voltage characteristics of semiconductor devices	K2
CO2	Develop their knowledge in understanding the various parameters of operational amplifiers and their linear applications	K3
CO3	Explain the combinational and sequential logic circuits	K5
CO4	Examine the design aspects of I/O and memory interfacing circuits	K4
CO5	Acquire knowledge of the 8086 instruction set to utilize it in programming and to distinguish the properties of Microprocessors & Microcontrollers	K3

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	S	S
CO2	S	S	S	S	S
CO3	S	М	S	S	S
CO4	S	S	S	S	М
CO5	S	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

Unit-I

Semiconductor Diodes and Devices :

Varactor diode - Schottky diode - Tunnel Diode - Gunn diode - Optoelectronic diodes - LED and photo diode - Junction Field Effect transistor - Structure and working - I -V Characteristics - CS amplifier design - MOSFET: Depletion and Enhancement type MOSFFT - Structure and working - volt - ampere characteristics - MOSFET as a switch - UJT characteristics - Relaxation oscillator - SCR characteristics - application in power control- DIAC,TRIAC.

Unit-II

Operational Amplifier and Applications :

Operational amplifier characteristics - Parameters of an OP-Amp - inverting and non-inverting amplifier - Sign changer - Scale changer - Adder - Subtractor- Integrator - Differentiator - Solving simultaneous and differential equations - log & antilog amplifiers - Generation of square, triangular and sine waves (Wein's bridge oscillator) - Schmitt trigger - Active filters (Second order Butterworth design) - Timer 555 : Internal architecture and working - Schmitt trigger - Astable and monostable multivibrators.

Unit-III

Digital Circuits and Devices :

Binary adder and Subtractor (using NAND gates) - Decoder/Demultiplexer: BCD to Decimal Decoder-4-to-16 line Demultiplexer; Data Selector/Multiplexer: 16-to-1 Multiplexer; Encoder- clocked SR Flip flops- D-type, JK and M/S JK Flip-Flops - Counters - Asynchronous and Synchronous - BCD counter -Shift registers types - serial register - Ring counter - Johnson counter - Memories: RAM, ROM, PROM, EPROM(qualitative explanation) - D to A conversion: weighted resister DAC - Binary R-2R ladder DAC - A to D conversion: counter type ADC - successive approximation converter - dual slope

(18 Hrs.)

(18 Hrs.)

(18 Hrs.)

Unit-IV

Microprocessor 8085 and applications :

Architecture of 8085 - Pin configuration - Instruction set of 8085- Instruction types - based on number of bytes, based on operation - Addressing modes - Interrupts: Maskable and non-maskable, vectored interrupts- Memory mapped I/O scheme - I/O mapped I/O scheme - Memory and I/O interfacing-Programmable peripheral interface (8255A) - Microprocessor based temperature monitoring systems - block diagram - Digital to analog conversion using DAC 0800 interfacing through PPI 8255 - Block diagram - Analog to digital conversion using ADC 0809 - Block diagram.

Unit-V

(18 Hrs.)

Microprocessor 8086 and Microcontroller:

The 8086 microprocessor - Architecture - Instruction classification - Instruction format - Data transfer operation - Arithmetic operations - Logic operations - rotate, compare - Writing assembly language programmes - Addition, Subtraction, Multiplication, Division - Comparison between microcontroller and microprocessors - The 8051 microcontroller - 8051 Architecture - Registers in 8051 - Pin description.

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	Mill Mann & Hal kais	Integrated Electronics	Tata McGraw Hill, New Delhi.	2005, 1 th Edition
2	A.P. Malvino and D.P. Leach	Digital Principles and Applications	Tata McGraw-Hill, Publishing Co., New Delhi.	2007, 4 th Edition
3	Goankar	Microprocessor & architecture programming and application with 8085/8080	New World International (P) Ltd	1999, 4 th Edition
4	V.Vijayendran	Fundamentals of Microprocessor - 8086	S.ViswanathanPvt Ltd.	2002, 1 st Edition
5	Kenneth J. Ayala	The 8051 Microcontroller	Penram International Publishing	2004, 3 rd Edition

Text Books

Reference Books

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition
1	Jacob Millman, Christos C Halkins and Chetan	Integrated Electronics Analog and Digital Circuits and Systems	Tata McGraw Hill Educatio Private Limited, New Delhi	2010, 2 nd Edition
2	Jacob mill Mann, Arvin Grabel	Microelectronics	Tata McGraw Hill, New Delhi.	2003, 2 nd Edition
3	V.Vijayendran	Fundamentals of Microprocessor - 8085	S.Viswanathan PVT.,LTD.	2009, 2 nd Edition
4	Douglas V.Hall	Microprocessors and Interfaces	Tata McGraw Hill Company	1999, 1 st Edition
5	Floyd	Digital fundamentals	Universal Book Stall, New Delhi.	2003, 1 st Edition

Web Resources

- 1. http://erzurum.edu.tr/Content/Yuklemeler/Personel/Bulent_CAKMAK/Kitap12570.pdf
- 2. http://www.ti.com/lit/an/sboa092b/sboa092b.pdf
- 3. <u>http://mirror.thelifeofkenneth.com/lib/electronics_archive/DigitalElectronicsBook.pdf</u>
- 4. http://ecehithaldia.in/teaching_material/Pinaki_Microprocessor846806128.pdf
- 5. <u>http://www.nptel.ac.in/courses/Webcourse-contents/IISc-</u> BANG/Microprocessors%20and%20Microcontrollers/pdf/Lecture_Notes/LNm1.pdf

Pedagogy

• Lecture, PPT, Seminar, Quiz and Field visit

SEMESTER II

CODE	COURSE TITLE
18PHPC207	QUANTUM MECHANICS – II

Category	CIA	ESE	L	Т	Р	Credit
Core	25	75	86	4	-	4

Preamble

The aim of this subject is to build up solid and systematic problem solving skills and to provide the foundations for molecular physics, nuclear physics and solid state physics. It also helps to demonstrate the principles of relativistic quantum mechanics and comprehend basic quantum mechanical applications at the research level.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Apply the concept of time dependent perturbation theory to develop Fermi Golden Rule	К3
CO2	Understand the interaction of particles through scattering theory	K2
CO3	Impart the knowledge of theory of radiations on the basis of semi classical treatment	K2
CO4	Analyze the behavior of particles at high energies and velocity comparable to the speed of light using relativistic wave equations	K4
CO5	Focus the dynamics of quantum field theory	K5

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	S	S
CO2	S	S	S	S	S
CO3	S	М	S	S	S
CO4	S	S	S	S	М
CO5	S	S	S	S	S

Syllabus

Unit –I

Time Dependent Perturbation Theory :

Time Dependent Perturbation Theory-First and Second Order Transitions -Transition to Continuum of States - Fermi Golden Rule - Constant and Harmonic Perturbation - Collision -Adiabatic and Sudden Approximation - A Charged Particle in an Electromagnetic Field.

Unit -II

Scattering Theory:

Scattering Amplitude - Expression in terms of Green's Function - Born Approximation and Its validity - Partial wave analysis - Phase Shifts - Asymptotic behavior of Partial Waves -The Scattering Amplitude in Terms of Phase Shift - Scattering by Coulomb Potential and Yukawa Potential.

Unit- III

Theory of Radiation (Semi Classical Treatment) :

Einstein's Coefficients - Spontaneous and Induced Emission of Radiation from Semi Classical Theory - Radiation Field as an Assembly of Oscillators - Interaction with Atoms - Emission and Absorption Rates - Density Matrix and its Applications.

Unit -IV

Relativistic Wave Equation :

Klein Gordon Equation - Plane Wave Equation-Charge and Current Density - Application to the Study of Hydrogen Like Atom - Dirac Relativistic Equation for a Free Particle - Dirac Matrices -Dirac Equation in Electromagnetic Field - Negative Energy States.

Unit-V

Text Books

Quantum Field Theory :

Quantization of Wave Fields - Classical Lagrangian Equation-Classical Hamiltonian Equation -Field Quantization of the Non-Relativistic Schrodinger Equation - Creation, Destruction and Number Operators - Anti Commutation Relations - Quantization of Electromagnetic Field Energy and Momentum.

Sl.No.	Author Name	Title of the Book	Publisher	Year and Edition			
1	G Aruldhas	Quantum Mechanics	Phi Learning Pvt. Ltd.	2013, 2 th Edition			
2	P.M. Mathews & K. Venkatesan,	Text Book of Quantum Mechanics	Tata McGraw Hill	2004, 1 st Edition			

(18 Hrs.)

(18 Hrs.)

(18 Hrs.)

(18 Hrs.)

(18 Hrs.)

3	David J.Griffiths	Introduction to Quantum Mechanics	Cambridge University Press	2017, 1 st Edition
4	A Devanathan	Quantum Mechanics	Narosa Publishing	2006, 1 st Edition

Reference Books

Author Name	Title of the Book	Publisher	Year and Edition
L.I Schiff and	Quantum Mechanics	McGraw Hill	2016,
Jayendran	Quantum Weenames	Education	4 th Edition
A Devanathan	Quantum Mechanics	Narosa Publishing	2006,
	Quantum Meenames	Therosu T donishing	1 st Edition
R Shankar	Principles of	SpringerPyt I td	2007,
K.Shanka	Quantum Mechanics,	Springeri vi Liu	1 st Edition
L.I Schiff and	Quantum Mechanics	McGraw Hill	2016,
Jayendran	Quantum Mechanics	Education	4 th Edition
	Author NameL.I Schiff andJayendranA. DevanathanR.ShankarL.I Schiff andJayendran	Author NameTitle of the BookL.I Schiff and JayendranQuantum MechanicsA. DevanathanQuantum MechanicsR.ShankarPrinciples of Quantum Mechanics,L.I Schiff and JayendranQuantum Mechanics	Author NameTitle of the BookPublisherL.I Schiff and JayendranQuantum MechanicsMcGraw Hill EducationA. DevanathanQuantum MechanicsNarosa PublishingR.ShankarPrinciples of Quantum Mechanics,SpringerPvt LtdL.I Schiff and JayendranQuantum MechanicsMcGraw Hill Education

Web Resources

- 1. http://web.mst.edu/~parris/QuantumTwo/Class_Notes/TDPT.pdf
- 2. http://www.tcm.phy.cam.ac.uk/~bds10/aqp/lec20-21_compressed.pdf
- 3. http://folk.ntnu.no/ioverbo/TFY4250/til15eng.pdf
- 4. http://www.phy.ohiou.edu/~elster/lectures/advqm_3.pdf
- 5. <u>http://users.physik.fu-berlin.de/~kleinert/b6/psfiles/Chapter-6-qurelfld.pdf</u>

Pedagogy

• Lecture, PPT, Seminar, Quiz and Group Discussion

SEMESTER II

CODE	COURSE TITLE
18PHPCP01	CORE PRACTICAL-I
	GENERAL EXPERIMENTS

Category	CIA	ESE	L	Т	Р	Credit
Core	40	60	-	-	105	4

Preamble

The aim of this subject is to gain and enhance the student understanding the basic Physics concepts through hands on experience. It provides the link between theory and practical in Physics and to differentiate between inferences based on theory and the outcomes of experiments. It also helps to develop and improve their experimental and programming skills.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the basics of physics involved in experiments and to compare the results with theoretical calculations.	K2
CO2	Develop the skill of performing experiments accurately.	К3
CO3	Gain knowledge of new conception in the solution of practical oriented problems and to virtually visualize the experiments through MATLAB programming.	K3
CO4	Explore the concepts of measurement technology, usage of new instruments and real time application in day to day requirements.	K4
CO5	Enhance the basic communication skills in the course of performing the laboratory experiments in groups and by interpreting the results	K6

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	S	S
CO2	S	S	S	S	S
CO3	S	М	S	S	S
CO4	S	S	S	S	М
CO5	S	S	S	S	S

Syllabus

GENERAL EXPERIMENTS

(Examination at the end of Second Semester)

Any Twelve Experiments

- 1. Young's modulus elliptical fringes (Cornu's method)
- 2. Young's modulus hyperbolic fringes (Cornu's method)
- 3. Stefan's constant.
- 4. Thickness of wire by air wedge and diffraction.
- 5. Thermal conductivity Forbe's method.
- 6. Electronic charge 'e' by Millikan's oil drop method.
- 7. Electronic specific charge 'e/m' by Thomson's method.
- 8. Thermistor temperature coefficient and band gap energy distribution.
- 9. Specific heat of a liquid Ferguson's method.
- 10. Biprism on optical bench determination of wavelength.
- 11. Determination of Viscosity of Liquid.
- 12. Diffraction at a prism face determination of wavelength.
- 13. Photo Electric Cell Planck 's constant.
- 14. e/m of Electron Helical Method.

MATLAB Programming

- 15. Roots of a quadratic equation, solution of a system of linear equations.
- 16. Newton-Raphson method and Runge Kutta method .
- 17. Curve fitting and interpolation.
- 18. Charging of a capacitor in an RC circuit with three time constants.
- 19. NPN transistor Input and Output Characteristics.
- 20. Frequency response of a low pass filter.

SEMESTER II

CODE	COURSE TITLE
18PHPCP02	CORE PRACTICAL-II
	ELECTRONICS

Category	CIA	ESE	L	Т	Р	Credit
Core	40	60	-	-	120	4

Preamble

The aim of this subject is to familiarize the basic concepts involved in the operation of solid state devices and to give an opportunity to do the experiments individually. It also helps to understand the basic concepts in ICs and digital devices and to acquire hands-on laboratory experience in utilizing modern test equipment.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number			Knowl	edge Level		
CO1	Acquire knowledge involved in electron	iques		K3		
CO2	Explain the function op amps characterist	Explain the functions of various semiconductor devices and op amps characteristics.				
CO3	Develop the link con circuits	Develop the link connecting theory and designing workable circuits				
CO4	Analyze, design, build and troubleshoot the combinational circuits using digital ICs.					K4
CO5	Think innovatively and also improve the creative skills that are essential for present day requirements.					K4
Mapping wi	th Programme Outc	omes				
COs	PO1	PO2	PO3		PO4	PO5

COs	POI	PO2	PO3	PO4	P05
CO1	М	S	S	S	S
CO2	S	S	S	S	S
CO3	S	М	S	S	S
CO4	S	S	S	S	М
CO5	S	S	S	S	S

SEMESTER II

Syllabus

ELECTRONICS

(Examination at the end of Second Semester)

Any Twelve Experiments

- 1. Regulated and Dual power supply Construction.
- 2. Parameters of Op amp.
- 3. Wave form generators Op-amp.
- 4. Wein's bridge oscillator Op-amp.
- 5. Phase Shift Oscillator Op-amp
- 6. Active filters Op-amp.
- 7. Frequency response of an Op amp
- 8. Sign, scale changer, adder and Subtractor Op-amp.
- 9. Op Amp : Voltage to current and current to voltage converter
- 10. Analog computer setup for solving simultaneous equations.
- 11. UJT relaxation oscillator & Schmitt trigger using IC 555.
- 12. Construction of Half Adder and Full Adder circuits using NAND gates.
- 13. Construction of Half Subtractor and full Subtractor circuits using NAND gates.
- 14. A.C amplifier-inverting, non-inverting, voltage follower-op-amp.
- 15. Multiplexer and Demultiplexer.
- 16. Decode and Encoder
- 17. Construction of amplitude modulation circuit and to calculate the modulation index.
- 18. Two stage amplifier
- 19. SCR Characteristics and its applications
- 20. Source Follower- FET.

SEMESTER - I Non Major Elective ATMOSPHERIC PHYSICS

Instructional Hrs.: 45

Max. Marks: CIA -25; ESE -75

Objective : To create interest in the basics of atmospheric physics for students of other disciplines.

UNIT I

Basic Concepts: Evolution of the atmosphere - structure of atmosphere - Energy in the atmosphere - Factors influencing Isolation - Heating and Cooling of the atmosphere temperature - Evaporation - Condensation - Precipitation - Climatic types of the world -Hydrosphere - nature of water - Ocean water.

UNIT II

Composition and structure of the Atmosphere: Composition of the atmosphere - Permanent Gases - Minor Gases - Particles in the atmosphere - Structure on the basic of composition -Chemical structure - Ionic structure - The outer atmosphere.

UNIT III

Insolation and heat budget: Introduction - Nature of radiation - Insolation - factors governing insolation - Transfer of insolation through the atmosphere - Terrestrial radiation - Heat budget of the earth - atmospheric system.

UNIT IV

Temperature and Pressure: Introduction - Factors controlling temperature distribution horizontal aspects - Factors controlling pressure - summer and winter pattern of pressure.

UNIT V

Atmospheric Pollution: Role of Meteorology in Atmospheric Pollution - Atmospheric Boundary Layer - Air Stability - Local Wind Structure - Ekman Spiral - Turbulence & Boundary Layer Scaling - Residence Time and Reaction Rates of Pollutants - Sulphur Compounds -Carbon Compounds - Organic compounds - Aerosols - Toxic Gases and Radio Active Particles -Trace Gases

Text Books

1. Anthes R.A., Panofsky, Cahir H.A., and Rango, Atmosphere , Columbus, Ohio, 1981, (Unit I and II).

2.Cole F.W., Introduction to meteorology, Wiley., New York, 1980, (Unit IV and V).

3. Siddhartha K., Atmosphere weather and climate, Kisalaya Publications Pvt Ltd., New Delhi, 2005, (Unit I to V).

Reference Books

1. Berry, Bollay F.A., and Beers, Hand book of Meteorology, Tata Mc Graw Hill, 1985.

2. Budyoko, TheEarths Climate Past & Future, Academic Press, 1982.

Sub. Code: 18PHPN101

Credits: 5

9 Hrs.

9 Hrs.

9 Hrs.

9 Hrs.

SEMESTER II SKILL BASED SUBJECT - I ADVANCED MULTI SKILL PAPER

Instructional Hrs: 45

Max. Marks: CIA - 40; ESE -60

Aim: To equip the students with knowledge on all topics as desirable from the point of view of brilliant success in the competitive examinations.

Objective: To familiarize the students with various types of tests that is employed by the diverse examining bodies.

UNIT I

Communication: Question tags - Gerund and Infinitives - Spotting the errors-Synonyms -Antonyms - One word substitution - Sentence completion - Prepositions - Articles.

General Awareness and Scientific Aptitude: Socio - Economic - Banking - Basic Sciences.

People and Environment.

Politics and Current Affairs

Higher Education.

Information and Communication Technology.

Teaching Aptitude.

Research Aptitude.

UNIT II

Logical Reasoning: Syllogism - Statement Conclusions - Statement Arguments - Statement Assumptions – Statement Courses of Action - Inference - Cause and Effect - Visual Reasoning-Direction Sense Test - Blood Relation - Coding and Decoding - Deductive Reasoning.

UNIT III

Numerical Reasoning and Quantitative Aptitude: Age - speed - Heights and Distance -Time and Distance - Ratio and Proportion - Percentage - Fraction - Profit and Loss - Interest - Average - Calendar - Clocks - Probability - Series - Venn Diagram - Data Interpretation.

UNIT IV

Research Methodology: Meaning of research- Objective of research - Motivation in research-Types of research - research approaches - Significance of research - Research methods Vs methodology - Research and scientific methods - Importance of knowing how research is done -Research process - Criteria of good research - Problem encountered by researches in India. UNIT V 9hrs

Manual for preparation of project report: General - Size of the project report - arrangement of contents of project report - page dimension and margin - Manuscript Preparation - Typing instructions - Division of chapters - Numbering instruction.

Sub Code: 18PHPS201 Credits: 5

9hrs

9hrs

9hrs

9 hrs

Reference Books

1. Agarwal.R.S, Quantitative Aptitude, S. Chand and Company, Reprint 2012.

2. Chopra.J.K, Bank Probationary Officers' Examination, Unique Publishers, 2010.

3. Datason. R.P, Manish Arora and Gulati.SW.L, Clerical Cadre Recruitment in State Bank of India, Newlight Publishers, 2013.

4. Davinder Kaur Bright, Railway Recruitment Board, Bright Publications, 2010.

5. Lal, Jain and Vashishtha, K.C, UGC NET/JRF/SET Teaching and Research Aptitude, UpkarPrakashan Publishers, 2012.

6. **PratyogitaDarpan**, UGC NET/JRF/SET Teaching and Research Aptitude, Upkar Prakashan Publishers, 2012

7. **Sharma.J.K**, IBPS Recruitment of Bank Clerical Cadre Examination, Unique Publishers, 2013.

8. Tara Chand, General Studies for Civil Services Preliminary Examinations,

Paper-I, Tata Mc Graw Hill Education Private Ltd, 2013.

9. Hari Mohan Prasad and Uma Rani Sinha. 2011. Objective English for Competitive Examinations. New Delhi: Tata McGraw Hill Education Private Ltd.

10. Jain T.S. Upkar's SBI Clerical Cadre Recruitment Examination. Agra: Upkar Prakashan.

11. **Dr.C.R.Kothari**, Research Methodology: Methods and Techniques, New Age International (P) Ltd, New Delhi.

SEMESTER-III

ELECTIVE PAPER-I

INTRODUCTORY ASTRONOMY, ASTROPHYSICS & COSMOLOGY

Instructional Hrs: 75

Sub Code: 17PHPE301 Credits: 4

15 Hrs.

Max. Marks: CIA -25; ESE -75

Objective: To provide the required knowledge on the fundamentals and the concepts of modern astronomy, astrophysics and cosmology

Unit - I

History of Astronomy: Introductory History of Astronomy - Ptolemy's Geocentric Universe-Copernicus Heliocentric Universe - Tycho Brahe and Galileo's Observations - Kepler's Laws of Planetary Motion - Newtonian Concept Of Gravity - Highlights of Einstein's Special and General Theory of Relativity - Curved Space Time - Evidence of Curved Space Time - Bending Of Light - Time Dilation.

Unit - II

Stars & Galaxies: Stars and Galaxies – Distances - Trigonometric Parallax - Inverse Square Law-Magnitude of Stars - Apparent Magnitude - Absolute Magnitude and Luminosity - Color and Temperature - Composition of Stars - Velocity, Mass and Sizes of Stars - Types of Stars-Temperature Dependence-Spectral Types - Hertzsprung-Russell (HR) Diagram - Spectroscopic Parallax.

Unit - III

Lives and death of stars: Stellar Evolution - Mass Dependence - Giant Molecular Cloud-Protostar - Main Sequence Star- Sub giant, Red Giant, Supergiant - Core Fusion - Red Giant (Or) Supergiant - Planetary Nebula (Or) Supernova - White Dwarfs - Novae And Supernovae -Neutron Stars – Pulsars - Black Holes - Detecting Black Holes - The Sun - Its Size and Composition - Sun's Interior Zones - Sun's Surface - Photosphere - Chromosphere - Corona -Sun's Power Source - Fusion Reaction Mechanism.

Unit -IV

Cosmology I: Introduction to Cosmology - Basic Observations and implications - Olber's Paradox - Expanding Universe - Gravitational Red shift - Doppler Effect - Hubble's Law and the Age of the Universe - Cosmological Principle - The Perfect Cosmological Principle -Observation and interpretation of Cosmic Microwave background Radiation (CMBR) - Evidence Supporting the General Big Bang Theory - Salient features of Steady State Theory. **Unit - V 15 Hrs.**

Cosmology II: Fate of the Universe - Dependence on Mass (Curvature of Space) - Critical density - Open Universe - Closed Universe - Homogenous and Isotropic Freidman – Robertson - Walker Universes - Deriving the Geometry of the Universe from the Background Radiation - Flatness Problem - Horizon Problem - Inflation and its effect on the universe -The Cosmological Constant.

15 Hrs.

15 Hrs.

TEXT BOOKS

1. K.D. Abhayankar, Astrophysics of the Solar System, Universities Press, 2002

2. Kaula. W.M., An Introduction to Planetary Physics, Wiley, 1968

3. Harold Zirin, Astrophysics of the Sun, Cambridge University Press, 1988

REFERENCE BOOKS

Luis A. Anchordoqu, Lectures on Astronomy, Astrophysics and Cosmology
Milwaukee, Lecture Notes of Department of Physics, University of Wisconsin

SEMESTER – IV

ELECTIVE PAPER-II

THERMODYNAMICS AND STATISTICAL MECHANICS

Instructional Hrs. :90 Max. Marks : CIA -25; ESE -75

Objective :To introduce the basic concepts of Thermo dynamics. To train the students to prepare for state & national level physics examinations.

UNIT I

Thermodynamics and Radiation : Second law of thermodynamics - Entropy and Second law of thermodynamics - Entropy and Disorder - Thermodynamic Potential and Reciprocity relation - Thermodynamic Equilibria - Chemical Potential - Blackbody radiation - Planck's Radiation law.

UNIT II

Basic Concepts : Phase space - Volume in phase space - Number of phase cells in given energy range of harmonic oscillator - Number of phase cell in the given energy range of 3 - dimensional free particle - Concept of ensemble- Micro canonical ensemble - Canonical ensemble - Grand Canonical ensemble - Density distribution in phase space - Liouvilles theorem - Postulate of equal apriori probability - Statistical equilibrium - Thermal equilibrium - Mechanical equilibrium - Particle equilibrium - Connection between Statistical and thermodynamic quantities.

UNIT III

Classical Distribution Law : Microstates and Macro states - Classical Maxwell-Boltzmann distribution law - Evaluation of constants, α and β - Maxwell's law of Distribution of velocities - Principle of equi-partition of energy - Gibbs paradox - Partition function and its correlation with thermodynamics quantities - Partition functions and its properties - Comparison of ensembles-Equipartition theorem - Applications

18 Hrs.

18 Hrs.

Credits: 4

Sub. Code: 17PHPE402

UNIT IV

Quantum Statistics : Indistinguishability and quantum statistics - Statistical weight and apriori probability - Identical particles and symmetry requirements - Bose Einstein's Statistics - Fermi Dirac Statistics - Results of three statistics - Thermodynamic interpretation of parameters α and β - Blackbody radiation and Planck radiation - Specific heat of solids: Dulong and Pettit's law-Einstein's Theory - Debye theory.

UNIT V

Application of Quantum Statistics:

Energy and pressure of ideal Bose Einstein gas - Bose Einstein condensation - Liquid helium -Energy and pressure of ideal Fermi Dirac gas - Free electron model and electronic emission -Onsager relations - Fluctuation; Energy, Pressure, Enthalpy - Bragg William Approximation -One dimensional Ising model

TEXT BOOKS

1. **Palash B. Pal,** An Introductory Course of Statistical Mechanics, Narosa Publishing House (2008), New Delhi

2. Kamal Singh & S.P. Singh, Elements of Statistical Mechanics, S. Chand & Company, New Delhi.

REFERENCE BOOKS

1. AvijitLahiri, Statistical Mechanics An Elementary Outline, University Press - 2002-Hyderabad

18 Hrs.