SEMESTER I

ALLIED - I: PAPER - I

MATHEMATICAL STATISTICS – I

Instructional Hrs.: 105 Sub.Code: 16MCUA101

Max.Marks: CIA – 25; ESE – 75 Credits : 5

Objective:

• To study about the random variables.

• The students will be able to apply statistical tools in real life problems as well as in research.

• The contents of this paper is a prerequisite for learning SPSS package.

UNIT I 21 Hrs.

Random Variables : Random Variable – Cumulative Distribution Function – Continuous Random Variable – Two Dimensional Random Variable – Marginal Probability Distribution – Conditional Probability Distribution – *Independent Random Variables*.

UNIT II 21 Hrs.

Characteristics of Distributions: Expectation or Mean Value – Function of a Random Variable – Properties of Expected Values. Variability (or dispersion) – *Properties of Variance* – Sample Mean and Sample Variance – Mean and Standard Deviation of the Combination of Two samples – Frequency Table – Tchebchev's Inequality.

UNIT III 21 Hrs.

Characteristics of Distributions: Moments – Moment Generating Function – Measures of Location - Measures of Dispersion – Skewness – Kurtosis – Covariance – Sample Correlation Coefficient - Correlation for a Grouped Data – Rank Correlation.

UNIT IV 21 Hrs.

Least Square and Regression Analysis : Curve Fitting – Principle of Least Squares – Fitting a Straight Line – Fitting a Second Degree Polynomial – To Fit a Curve of the form $y = ae^{bx}$, $y = ab^x$, $y = ax^b$ - Regression of First Kind – Regression of Second Kind – Scatter Diagram – Lines of Regression – *Regression Line of Y on X* – Properties of Regression Coefficient – Angle between the Regression Lines.

UNIT V 21 Hrs.

Discrete Distribution and Continuous Distributions: Binomial Distribution — Poisson Distribution — Continuous Distribution: Normal Distribution — Rectangular Distribution(Uniform Distribution) — Exponential Distribution.

Note: Italics denotes Self Study Topics.

TEXT BOOK:

1. **S.Venkataraman, P.R.Vittal.,** *Mathematical Statisics*, 1973.

Unit	Chapter	Sections	Page No
I	2	2.1, 2.2, 2.3, 2.5, 2.6, 2.7, 2.8	39-70
II	3	3.1, 3.2, 3.3, 3.4 - 3.8	73-110
III	3	3.9 - 3.19	111-157
IV	11	11.1 - 11.4, 11.7 - 11.14	379-405
V	4 & 5	4.1, 4.2, 5.1, 5.2, 5.3	163-198, 203-241

• Question Paper setters are asked to confine to the **above text book only.**

SEMESTER II

ALLIED - I: PAPER - II

MATHEMATICAL STATISTICS – II

Instructional Hrs.: 105 Sub.Code: 16MCUA202

Max.Marks: CIA – 25; ESE – 75 Credits: 5

Objective:

- To study about the Sampling distribution.
- The students will be able to apply statistical tools in real life problems as well as in research.
- The contents of this paper are a prerequisite for learning SPSS package.

UNIT I 21 Hrs.

Sampling Distribution : χ^2 Distribution – Students t Distribution – Snedecor's F Distribution – Sampling Distribution – Sampling Distribution of Mean and Variance in Samples from a Normal Distribution – The Central Limit Theorem.

UNIT II 21 Hrs.

Theory of Estimation : Introduction – Properties of Good Estimators – *Method of Moments* – Principle of Maximum Likelihood.

UNIT III 21 Hrs.

Testing Hypothesis and Tests of Significance: General Method of Testing Hypothesis – Test of Significance based on the *normal*, t, F Distribution – Small Samples – Significance of the difference between the Variance of Two Samples.

UNIT IV 21 Hrs.

Tests of Goodness of Fit : The Chi-Square Test of Hypothesis – Chi-Square Test of Goodness of Fit – *Application to Contingency Tables*.

UNIT V 21 Hrs.

Sampling from Finite Populations: Random Sampling – Methods of Selection of a Random Sample – Estimates of the Mean and Variance of the Mean in Simple Random Sampling – Stratified Random Sampling – *Optimum Allocation* – Systematic Samples.

Note: Italics denotes Self Study Topics.

TEXT BOOK:

1. S.Venkataraman, P.R.Vittal., Mathematical Statistics, 1973.

Unit	Chapter	Sections	Page No
I	6	6.4, 6.5, 6.6, 6.7, 6.9	258-281, 283-285
II	7	7.1 - 7.4	291-312
III	9	9.1 - 9.4	328-357
IV	10	10.1, 10.2	358-378
V	12	12.1 - 12.6	406-432

• Question Paper setters are asked to confine to the **above text book only.**

SEMESTER - VI

PRACTICAL - MATHEMATICAL SOFTWARE

(MATLAB, SPSS & LATEX)

Instructional Hrs: 4 Subject Code: 16MCUCP05

Max.Marks: CIA- 40; ESE-60 Credits :3

MATLAB:

- 1. Write a program to find the following for the matrices
 - (i) Sum (ii) Product (iii) Determinant (iv) Sum of the diagonal (v) 2nd row of the transpose.

2. Write a program to

- (i) Find the Eigen values, Eigen vectors & Inverse for a given matrix.
- (ii) Check whether the given matrix is orthogonal.
- Write a program to find the solution of a given system of equations by LU Decomposition method.
- 4. Write a program to solve the given system of equations by using Gaussian Elimination method.

5. Write a program to find the value of

(i) Sin(x) and Sinh(x) (ii) Cos(x) and Cosh(x) (iii) tan(x) and tanh(x) for

$$x = 0, \frac{\pi}{2}, \pi$$

- 6. Write a program to find the zero of the function $x^2 \sin x$ at $x = \frac{\pi}{4}$
- 7. Write a program to evaluate the following (i) Single Integral (ii) Double Integral with finite limits.
- 8. Write a program to solve Lagrangian polynomial for the given data.

9. Write a program to check whether the given function is (i) Continuous (ii) Differentiable (iii) Analytic .

SPSS:

- 10. Write a program to find the following for the numerical data
 - (i) Mean (ii) Median (iii) Harmonic Mean (iv) Geometric Mean (v) Variance and Standard Deviation.
- 11. Write a program to find the probability function by using
 - (i) Binomial Distribution (ii) Poisson Distribution (iii) Normal Distribution.
- 12. Write a program to create a database, present the data through charts and diagrams and summarize the data using frequencies.
- 13. Write a program to apply T- test for an analysis of (i) One sample (ii) Independent samples (iii) Paired samples.
- 14. Write a program to analysis means of different variables by using one way ANOVA table.
- 15. Write a program to fit a (i) Straight line (ii) Exponential.

LATEX:

- 16. Type a Document in different ways(Left, Right, Center, Justify).
- 17. Type your own Bio-Data.
- 18. Draw a Table Structure.
- 19. Type a given Mathematical expression using Differentiation, Integration & Trigonometry.
- 20. Type a given Article.