SEMESTER VI

Elective III

INSTRUMENTATION

Instructional Hrs: 60 Sub. Code:15PHUE603

Max. Marks: CIA – 25: ESE - 75 Credits: 4

Objective: To enable the students to understand all aspects of electronic instruments.

UNIT I 12 Hrs.

Qualities of Measurements: Classification of Instrument- Factors in making measurements - Errors in measurement, accuracy – precision - significant figures - statistical analysis - probability of error - limiting error, - Categories of Errors – Electrical standards.

UNIT II 12 Hrs.

Bridges: Wheatstone's bridge – Kelvin's bridge – AC bridges –Hay's bridge – Anderson Bridge – De Sauty Bridge-Carey Foster Bridge.

UNIT III 12 Hrs.

Transducers: Introduction -Resistive transducer- strain gauges: unbonded resistance wire strain gauge -Inductive transducer -LVDT -Capacitive transducer -Piezoelectric transducer - Photo electric transducer - Temperature transducer.

UNIT IV 12Hrs.

Digital Instruments: Digital multimeter- Digital voltmeter- Digital frequency meter-Measurement of pH- Digital tacometer – Digital phase meter- Digital measurement of time-Digital capacitance meter.

UNIT V 12 Hrs.

Display and Recording Devices: Cathode ray oscilloscope – Liquid Crystal Display (LCD)–Bar graph display-Segmental and dot matrix display – Null type recorders: Potentiometric recorders –(X-Y) Recorder, Magnetic tape recorders – Digital data recording – Data loggers.

TEXT BOOK

- Joseph J. Carr Pearson., "Elements of Electronic Instrumentation and Measurements",
 edition.
- 2.**Kalsi H.S.,** "Electronic Instrumentation", Third Edition, Tata McGraw-Hill Company, New Delhi, 2010.
- 3. **Sawhney A.K.,** "A course in Electrical and Electronic Measurement and Instrumentation", DhanpatRai and Sons, New Delhi, 2013

REFERENCES

- 1. Albert D. Herlfrick & William D. Cooper., "Modern electronic Instrumentation & Measurement Techniques" Prentice Hall of India, 2002.
- 2. **Bell, A.D.,** "Electronic Instrumentation and Measurements", 2nd Edition, Prentice Hall of India, New Delhi, New Delhi, 2003

SEMESTER VI

Elective II

FUNDAMENTALS OF MICROPROCESSORS

Instructional Hrs.: 60 Sub. Code: 15PHUE602

Max. Marks: CIA-25; ESE-75 Credits: 4

Objective: The purpose is to understand the basics of 8085 Microprocessor and to provide an

in-depth knowledge in programming.

UNIT I 12 Hrs.

Introduction to Microprocessors and Architecture of 8085 Microprocessor: Evolution of Microprocessors – Microprocessor Based System (Micro computer) –8085 Microprocessor – Pin functionsof 8085 Microprocessor – Architecture of 8085 Microprocessor – ALU – Registers – Accumulator – Flag register – program counter – Stack pointer – Bus: Address Bus – Data bus – Control bus.

UNIT II 12 Hrs.

Instruction set of 8085: Computer languages —Machine language — Assembly language — High level language— Instruction format —Opcode — Operand — Classification of instruction based on length — Classification of instruction based on function: Data transfer instructions — Arithmetic instructions —Logic instructions—Branch instructions— Machine control instructions— Stack — Subroutines— Addressing Modes.

UNIT III 12 Hrs.

Microprocessor Timings: Timing and Control Unit – Instruction Cycle – Machine Cycle – T-State–Fetch operation – Execute Cycle – Instruction and Data Flow – Timings of Intel 8085 –

OP Code Fetch Cycle – Memory And I/O Read Cycle – *Memory And I/O –Write Cycles*–Programming Techniques using Looping, Counting and Indexing.

UNIT IV 12

Hrs.

Interfacing Memory and I/O Devices: Introduction – Address Space Partitioning – Memory mapped I/O scheme – I/O Mapped I/O scheme –Address Map – Address Decoding using 3 to 8 Decoder(74LS138) – Memory Interfacing(2K x 8 EPROM and RAM) – Data Transfer Schemes: Programmed Data Transfer – Synchronous, Asynchronous, Interrupt Driven Data Transfer – DMA Principles – 8255 Programmable Peripheral Interface – Programming the 8255.

UNIT V 12

Hrs.

Assembly language programs and Microprocessor Applications: Assembly language programs for i) Addition of two 8 - bit numbers ii) Subtraction of two 8 - bit numbers iii) Multiplication and Division of 8 - bit numbersiv) Greatest and Smallest number in an array of 8 - bit numbers— Code Conversion: *BCD to Binary – Binary to BCD*—A temperature monitoring system – Microcontroller 8051(Block Diagram)

Note: *Italics* denotes Self study Topics

TEXT BOOKS

1.Aditya P Mathur., "Introduction To Microprocessors", Tata McGraw –Hill Publishing Company Ltd., New Delhi, 3rd Edition.

2.Ram B., "Fundamentals of Microprocessors and Microcomputers", DhanpatRai Publications(p) Ltd., New Delhi, 6th Edition, 2005.

3.Ramesh Gaonkar., "Microprocessor, Architecture, Programming and Applications with the 8085", Penram International Publishing (India) Private Limited, Mumbai, 5th Edition.

REFERENCE BOOKS

- **1. Anokh Singh, Chhabra A.K.**, "Fundamentals Of Microprocessor And Its Applications" S.Chand& Company Ltd., New Delhi, First Edition, 2005.
- **2. V.Vijayendran.,** "Fundamentals Of Microprocessor-8085", Viswanathan Publication, Chennnai, First Edition 2002.